Visible to the public Biblio

Found 103 results

Filters: Keyword is ransomware  [Clear All Filters]
Cooley, Rafer, Cutshaw, Michael, Wolf, Shaya, Foster, Rita, Haile, Jed, Borowczak, Mike.  2021.  Comparing Ransomware using TLSH and @DisCo Analysis Frameworks. 2021 IEEE International Conference on Big Data (Big Data). :2084—2091.
Modern malware indicators utilized by the current top threat feeds are easily bypassed and generated through enigmatic methods, leading to a lack of detection capabilities for cyber defenders. Static hash-based algorithms such as MD5 or SHA generate indicators that are rendered obsolete by modifying a single byte of the source file. Conversely, fuzzy hash-based algorithms such as SSDEEP and TLSH are more robust to alterations of source information; however, these methods often utilize context boundaries that are hard to define or not based on meaningful information. In previous work, a custom binary analysis tool was created called @DisCo. In this study, four current ransomware campaigns were analyzed using TLSH fuzzy hashing and the @DisCo tool. While TLSH works on the binary level of the entire program, @DisCo works at an intermediate function level. The results from each analysis method were compared to provide validation between the two as well as introduce a narrative for using combinations of these types of methods for the creation of stronger indicators of compromise.
Andes, Neil, Wei, Mingkui.  2020.  District Ransomware: Static and Dynamic Analysis. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Ransomware is one of the fastest growing threats to internet security. New Ransomware attacks happen around the globe, on a weekly basis. These attacks happen to individual users and groups, from almost any type of business. Many of these attacks involve Ransomware as a service, where one attacker creates a template Malware, which can be purchased and modified by other attackers to perform specific actions. The District Ransomware was a less well-known strain. This work focuses on statically and dynamically analyzing the District Ransomware and presenting the results.
Sani, Abubakar Sadiq, Yuan, Dong, Meng, Ke, Dong, Zhao Yang.  2021.  R-Chain: A Universally Composable Relay Resilience Framework for Smart Grids. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01–05.
Smart grids can be exposed to relay attacks (or wormhole attacks) resulting from weaknesses in cryptographic operations such as authentication and key derivation associated with process automation protocols. Relay attacks refer to attacks in which authentication is evaded without needing to attack the smart grid itself. By using a universal composability model that provides a strong security notion for designing cryptographic operations, we formulate the necessary relay resilience settings for strengthening authentication and key derivation and enhancing relay security in process automation protocols in this paper. We introduce R-Chain, a universally composable relay resilience framework that prevents bypass of cryptographic operations. Our framework provides an ideal chaining functionality that integrates all cryptographic operations such that all outputs from a preceding operation are used as input to the subsequent operation to support relay resilience. We apply R-Chain to provide relay resilience in a practical smart grid process automation protocol, namely WirelessHART.
Rathod, Viraj, Parekh, Chandresh, Dholariya, Dharati.  2021.  AI & ML Based Anamoly Detection and Response Using Ember Dataset. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.
Taylor, Michael A., Larson, Eric C., Thornton, Mitchell A..  2021.  Rapid Ransomware Detection through Side Channel Exploitation. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :47–54.
A new method for the detection of ransomware in an infected host is described and evaluated. The method utilizes data streams from on-board sensors to fingerprint the initiation of a ransomware infection. These sensor streams, which are common in modern computing systems, are used as a side channel for understanding the state of the system. It is shown that ransomware detection can be achieved in a rapid manner and that the use of slight, yet distinguishable changes in the physical state of a system as derived from a machine learning predictive model is an effective technique. A feature vector, consisting of various sensor outputs, is coupled with a detection criteria to predict the binary state of ransomware present versus normal operation. An advantage of this approach is that previously unknown or zero-day version s of ransomware are vulnerable to this detection method since no apriori knowledge of the malware characteristics are required. Experiments are carried out with a variety of different system loads and with different encryption methods used during a ransomware attack. Two test systems were utilized with one having a relatively low amount of available sensor data and the other having a relatively high amount of available sensor data. The average time for attack detection in the "sensor-rich" system was 7.79 seconds with an average Matthews correlation coefficient of 0.8905 for binary system state predictions regardless of encryption method and system load. The model flagged all attacks tested.
Ayub, Md. Ahsan, Sirai, Ambareen.  2021.  Similarity Analysis of Ransomware based on Portable Executable (PE) File Metadata. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :1–6.
Threats, posed by ransomware, are rapidly increasing, and its cost on both national and global scales is becoming significantly high as evidenced by the recent events. Ransomware carries out an irreversible process, where it encrypts victims' digital assets to seek financial compensations. Adversaries utilize different means to gain initial access to the target machines, such as phishing emails, vulnerable public-facing software, Remote Desktop Protocol (RDP), brute-force attacks, and stolen accounts. To combat these threats of ransomware, this paper aims to help researchers gain a better understanding of ransomware application profiles through static analysis, where we identify a list of suspicious indicators and similarities among 727 active ran-somware samples. We start with generating portable executable (PE) metadata for all the studied samples. With our domain knowledge and exploratory data analysis tasks, we introduce some of the suspicious indicators of the structure of ransomware files. We reduce the dimensionality of the generated dataset by using the Principal Component Analysis (PCA) technique and discover clusters by applying the KMeans algorithm. This motivates us to utilize the one-class classification algorithms on the generated dataset. As a result, the algorithms learn the common data boundary in the structure of our studied ransomware samples, and thereby, we achieve the data-driven similarities. We use the findings to evaluate the trained classifiers with the test samples and observe that the Local Outlier Factor (LoF) performs better on all the selected feature spaces compared to the One-Class SVM and the Isolation Forest algorithms.
Almousa, May, Osawere, Janet, Anwar, Mohd.  2021.  Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques. 2021 Third International Conference on Transdisciplinary AI (TransAI). :19–24.
The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.
Pagán, Alexander, Elleithy, Khaled.  2021.  A Multi-Layered Defense Approach to Safeguard Against Ransomware. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0942–0947.
There has been a significant rise in ransomware attacks over the last few years. Cyber attackers have made use of tried and true ransomware viruses to target the government, health care, and educational institutions. Ransomware variants can be purchased on the dark web by amateurs giving them the same attack tools used by professional cyber attackers without experience or skill. Traditional antivirus and antimalware products have improved, but they alone fall short when it comes to catching and stopping ransomware attacks. Employee training has become one of the most important aspects of being prepared for attempted cyberattacks. However, training alone only goes so far; human error is still the main entry point for malware and ransomware infections. In this paper, we propose a multi-layered defense approach to safeguard against ransomware. We have come to the startling realization that it is not a matter of “if” your organization will be hit with ransomware, but “when” your organization will be hit with ransomware. If an organization is not adequately prepared for an attack or how to respond to an attack, the effects can be costly and devastating. Our approach proposes having innovative antimalware software on the local machines, properly configured firewalls, active DNS/Web filtering, email security, backups, and staff training. With the implementation of this layered defense, the attempt can be caught and stopped at multiple points in the event of an attempted ransomware attack. If the attack were successful, the layered defense provides the option for recovery of affected data without paying a ransom.
Almousa, May, Basavaraju, Sai, Anwar, Mohd.  2021.  API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.
Ransomware is a major malware attack experienced by large corporations and healthcare services. Ransomware employs the idea of cryptovirology, which uses cryptography to design malware. The goal of ransomware is to extort ransom by threatening the victim with the destruction of their data. Ransomware typically involves a 3-step process: analyzing the victim’s network traffic, identifying a vulnerability, and then exploiting it. Thus, the detection of ransomware has become an important undertaking that involves various sophisticated solutions for improving security. To further enhance ransomware detection capabilities, this paper focuses on an Application Programming Interface (API)-based ransomware detection approach in combination with machine learning (ML) techniques. The focus of this research is (i) understanding the life cycle of ransomware on the Windows platform, (ii) dynamic analysis of ransomware samples to extract various features of malicious code patterns, and (iii) developing and validating machine learning-based ransomware detection models on different ransomware and benign samples. Data were collected from publicly available repositories and subjected to sandbox analysis for sampling. The sampled datasets were applied to build machine learning models. The grid search hyperparameter optimization algorithm was employed to obtain the best fit model; the results were cross-validated with the testing datasets. This analysis yielded a high ransomware detection accuracy of 99.18% for Windows-based platforms and shows the potential for achieving high-accuracy ransomware detection capabilities when using a combination of API calls and an ML model. This approach can be further utilized with existing multilayer security solutions to protect critical data from ransomware attacks.
Urooj, Umara, Maarof, Mohd Aizaini Bin, Al-rimy, Bander Ali Saleh.  2021.  A proposed Adaptive Pre-Encryption Crypto-Ransomware Early Detection Model. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
Crypto-ransomware is a malware that uses the system’s cryptography functions to encrypt user data. The irreversible effect of crypto-ransomware makes it challenging to survive the attack compared to other malware categories. When a crypto-ransomware attack encrypts user files, it becomes difficult to access these files without having the decryption key. Due to the availability of ransomware development tool kits like Ransomware as a Service (RaaS), many ransomware variants are being developed. This contributes to the rise of ransomware attacks witnessed nowadays. However, the conventional approaches employed by malware detection solutions are not suitable to detect ransomware. This is because ransomware needs to be detected as early as before the encryption takes place. These attacks can effectively be handled only if detected during the pre-encryption phase. Early detection of ransomware attacks is challenging due to the limited amount of data available before encryption. An adaptive pre-encryption model is proposed in this paper which is expected to deal with the population concept drift of crypto-ransomware given the limited amount of data collected during the pre-encryption phase of the attack lifecycle. With such adaptability, the model can maintain up-to-date knowledge about the attack behavior and identify the polymorphic ransomware that continuously changes its behavior.
Lee, Sun-Jin, Shim, Hye-Yeon, Lee, Yu-Rim, Park, Tae-Rim, Park, So-Hyun, Lee, Il-Gu.  2021.  Study on Systematic Ransomware Detection Techniques. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :297–301.
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
Zhuravchak, Danyil, Ustyianovych, Taras, Dudykevych, Valery, Venny, Bogdan, Ruda, Khrystyna.  2021.  Ransomware Prevention System Design based on File Symbolic Linking Honeypots. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:284–287.
The data-driven period produces more and more security-related challenges that even experts can hardly deal with. One of the most complex threats is ransomware, which is very taxing and devastating to detect and mainly prevent. Our research methods showed significant results in identifying ransomware processes using the honeypot concept augmented with symbolic linking to reduce damage made to the file system. The CIA (confidentiality, integrity, availability) metrics have been adhered to. We propose to optimize the malware process termination procedure and introduce an artificial intelligence-human collaboration to enhance ransomware classification and detection.
Farion-Melnyk, Antonina, Rozheliuk, Viktoria, Slipchenko, Tetiana, Banakh, Serhiy, Farion, Mykhailyna, Bilan, Oksana.  2021.  Ransomware Attacks: Risks, Protection and Prevention Measures. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :473—478.
This article is about the current situation of cybercrime activity in the world. Research was planned to seek the possible protection measures taking into account the last events which might create an appropriate background for increasing of ransomware damages and cybercrime attacks. Nowadays, the most spread types of cybercrimes are fishing, theft of personal or payment data, cryptojacking, cyberespionage and ransomware. The last one is the most dangerous. It has ability to spread quickly and causes damages and sufficient financial loses. The major problem of this ransomware type is unpredictability of its behavior. It could be overcome only after the defined ransom was paid. This conditions created an appropriate background for the activation of cyber criminals’ activity even the organization of cyber gangs – professional, well-organized and well-prepared (tactical) group. So, researches conducted in this field have theoretical and practical value in the scientific sphere of research.
Ivanov, Michael A., Kliuchnikova, Bogdana V., Chugunkov, Ilya V., Plaksina, Anna M..  2021.  Phishing Attacks and Protection Against Them. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :425—428.
Phishing, ransomware and cryptojacking are the main threats to cyber security in recent years. We consider the stages of phishing attacks, examples of such attacks, specifically, attacks using ransomware, malicious PDF files, and banking trojans. The article describes the specifics of phishing emails. Advices on phishing protection are given.
Aljubory, Nawaf, Khammas, Ban Mohammed.  2021.  Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1–6.

Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.

Deri, Luca, Fusco, Francesco.  2021.  Using Deep Packet Inspection in CyberTraffic Analysis. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :89–94.
In recent years we have observed an escalation of cybersecurity attacks, which are becoming more sophisticated and harder to detect as they use more advanced evasion techniques and encrypted communications. The research community has often proposed the use of machine learning techniques to overcome the limitations of traditional cybersecurity approaches based on rules and signatures, which are hard to maintain, require constant updates, and do not solve the problems of zero-day attacks. Unfortunately, machine learning is not the holy grail of cybersecurity: machine learning-based techniques are hard to develop due to the lack of annotated data, are often computationally intensive, they can be target of hard to detect adversarial attacks, and more importantly are often not able to provide explanations for the predicted outcomes. In this paper, we describe a novel approach to cybersecurity detection leveraging on the concept of security score. Our approach demonstrates that extracting signals via deep packet inspections paves the way for efficient detection using traffic analysis. This work has been validated against various traffic datasets containing network attacks, showing that it can effectively detect network threats without the complexity of machine learning-based solutions.
Kovalchuk, Olha, Shynkaryk, Mykola, Masonkova, Mariia.  2021.  Econometric Models for Estimating the Financial Effect of Cybercrimes. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :381–384.
Technological progress has changed our world beyond recognition. However, along with the incredible benefits and conveniences we have received new dangers and risks. Mankind is increasingly becoming hostage to information technology and cyber world. Recently, cybercrime is one of the top 10 risks to sustainable development in the world. It poses serious new challenges to global security and economy. The aim of the article is to obtain an assessment of some of the financial effects of modern IT crimes based on an analysis of the main aspects of monetary costs and the hidden economic impact of cybercrime. A multifactor regression model has been proposed to determine the contribution of the cost of the main consequences of IT incidents: business disruption, information loss, revenue loss and equipment damage caused by different types of cyberattacks worldwide in 2019 to total cost of cyberattacks. Information loss has been found to have a major impact on the total cost of cyberattacks, reducing profits and incurring additional costs for businesses. It was built a canonical model for identifying the dependence of total submission to ID ransomware, total cost of cybercrime and the main indicators of economic development for the TOP-10 countries. There is a significant correlation between two sets of indicators, in particular, it is confirmed that most cyberattacks target countries - countries with a high level of development, and the consequences of IT crimes are more significant for low-income countries.
Basnet, Manoj, Poudyal, Subash, Ali, Mohd. Hasan, Dasgupta, Dipankar.  2021.  Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1—5.
The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC) and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the state of charge (SOC) profile by exceeding the SOC control thresholds. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.
Jiao, Jian, Zhao, Haini, Liu, Yong.  2021.  Analysis and Detection of Android Ransomware for Custom Encryption. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :220–225.
At present, the detection of encrypted ransomware under the Android platform mainly relies on analyzing the API call of the encryption function. But for ransomware that uses a custom encryption algorithm, the method will be invalid. This article analyzed the files before and after encryption by the ransomware, and found that there were obvious changes in the information entropy and file name of the files. Based on this, this article proposed a detection method for encrypted ransomware under the Android platform. Through pre-setting decoy files and the characteristic judgment before and after the execution of the sample to be tested, completed the detection and judgment of the ransomware. Having tested 214 samples, this method can be porved to detect encrypted ransomware accurately under the Android platform, with an accuracy rate of 98.24%.
Chandra, Nungky Awang, Putri Ratna, Anak Agung, Ramli, Kalamullah.  2020.  Development of a Cyber-Situational Awareness Model of Risk Maturity Using Fuzzy FMEA. 2020 International Workshop on Big Data and Information Security (IWBIS). :127–136.
This paper uses Endsley's situational awareness model as a starting point for creating a new cyber-security awareness model for risk maturity. This is used to model the relationship between risk management-based situational awareness and levels of maturity in making decisions to deal with potential cyber-attacks. The risk maturity related to cyber situational awareness using the fuzzy failure mode effect analysis (FMEA) method is needed as a basis for effective risk-based decision making and to measure the level of maturity in decision making using the Software Engineering Institute Capability Maturity Model Integration (SEI CMMI) approach. The novelty of this research is that it builds a model of the relationship between the level of maturity and the level of risk in cyber-situational awareness. Based on the data during the COVID-19 pandemic, there was a decrease in the number of incidents, including the following decreases: from 15-29 cases of malware attacks to 8-12 incidents, from 20-35 phishing cases to 12-15 cases and from 5-10 ransomware cases to 5-6 cases.
Alsoghyer, Samah, Almomani, Iman.  2020.  On the Effectiveness of Application Permissions for Android Ransomware Detection. 2020 6th Conference on Data Science and Machine Learning Applications (CDMA). :94–99.
Ransomware attack is posting a serious threat against Android devices and stored data that could be locked or/and encrypted by such attack. Existing solutions attempt to detect and prevent such attack by studying different features and applying various analysis mechanisms including static, dynamic or both. In this paper, recent ransomware detection solutions were investigated and compared. Moreover, a deep analysis of android permissions was conducted to identify significant android permissions that can discriminate ransomware with high accuracy before harming users' devices. Consequently, based on the outcome of this analysis, a permissions-based ransomware detection system is proposed. Different classifiers were tested to build the prediction model of this detection system. After the evaluation of the ransomware detection service, the results revealed high detection rate that reached 96.9%. Additionally, the newly permission-based android dataset constructed in this research will be made available to researchers and developers for future work.
Bajpai, Pranshu, Enbody, Richard.  2020.  An Empirical Study of API Calls in Ransomware. 2020 IEEE International Conference on Electro Information Technology (EIT). :443–448.
Modern cryptographic ransomware pose a severe threat to the security of individuals and organizations. Targeted ransomware attacks exhibit refinement in attack vectors owing to the manual reconnaissance performed by the perpetrators for infiltration. The result is an impenetrable lock on multiple hosts within the organization which allows the cybercriminals to demand hefty ransoms. Reliance on prevention strategies is not sufficient and a firm comprehension of implementation details is necessary to develop effective solutions that can thwart ransomware after preventative strategies have failed. Ransomware depend heavily on the abstraction offered by Windows APIs. This paper provides a detailed review of the common API calls in ransomware. We propose four classes of API calls that can be used for profiling and generating effective API call relationships useful in automated detection. Finally, we present counts and visualizations pertaining to API call extraction from real-world ransomware that demonstrate that even advanced variants from different families carry similarities in implementation.
Bajpai, Pranshu, Enbody, Richard.  2020.  An Empirical Study of Key Generation in Cryptographic Ransomware. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Ransomware acquire the leverage necessary for ransom extraction via encryption of irreplaceable data. Successful encryption requires secure key generation and therefore comprehension of key generation strategies deployed in ransomware is critical for developing effective response and recovery solutions. This paper presents a systematic study of key generation strategies observed in modern ransomware with the goal of facilitating swift identification of cryptographically insecure and operationally nonviable key routines in novel threats. Empirical evidence of the identified strategies is provided in the form of code snippets and disassembly of real-world ransomware. Additionally, the identified strategies are mapped to a timeline based on the actual ransomware samples where these strategies were observed. Finally, a list of 10 questions provides guidance in recognizing the critical intricacies of key generation and deployment in novel ransomware.
Rouka, Elpida, Birkinshaw, Celyn, Vassilakis, Vassilios G..  2020.  SDN-based Malware Detection and Mitigation: The Case of ExPetr Ransomware. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :150–155.
This paper investigates the use of Software-Defined Networking (SDN) in the detection and mitigation of malware threat, focusing on the example of ExPetr ransomware. Extensive static and dynamic analysis of ExPetr is performed in a purpose-built SDN testbed. The results acquired from this analysis are then used to design and implement an SDN-based solution to detect the malware and prevent it from spreading to other machines inside a local network. Our solution consists of three security mechanisms that have been implemented as components/modules of the Python-based POX controller. These mechanisms include: port blocking, SMB payload inspection, and HTTP payload inspection. When malicious activity is detected, the controller communicates with the SDN switches via the OpenFlow protocol and installs appropriate entries in their flow tables. In particular, the controller blocks machines which are considered infected, by monitoring and reacting in real time to the network traffic they produce. Our experimental results demonstrate that the proposed designs are effective against self-propagating malware in local networks. The implemented system can respond to malicious activities quickly and in real time. Furthermore, by tuning certain thresholds of the detection mechanisms it is possible to trade-off the detection time with the false positive rate.
KARA, Ilker, AYDOS, Murat.  2020.  Cyber Fraud: Detection and Analysis of the Crypto-Ransomware. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0764–0769.
Currently as the widespread use of virtual monetary units (like Bitcoin, Ethereum, Ripple, Litecoin) has begun, people with bad intentions have been attracted to this area and have produced and marketed ransomware in order to obtain virtual currency easily. This ransomware infiltrates the victim's system with smartly-designed methods and encrypts the files found in the system. After the encryption process, the attacker leaves a message demanding a ransom in virtual currency to open access to the encrypted files and warns that otherwise the files will not be accessible. This type of ransomware is becoming more popular over time, so currently it is the largest information technology security threat. In the literature, there are many studies about detection and analysis of this cyber-bullying. In this study, we focused on crypto-ransomware and investigated a forensic analysis of a current attack example in detail. In this example, the attack method and behavior of the crypto-ransomware were analyzed and it was identified that information belonging to the attacker was accessible. With this dimension, we think our study will significantly contribute to the struggle against this threat.