Visible to the public Biblio

Filters: Keyword is Information Centric Networks  [Clear All Filters]
Zhou, Yiwen, Shen, Qili, Dong, Mianxiong, Ota, Kaoru, Wu, Jun.  2019.  Chaos-Based Delay-Constrained Green Security Communications for Fog-Enabled Information-Centric Multimedia Network. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). :1–6.
The Information-Centric Network possessing the content-centric features, is the innovative architecture of the next generation of network. Collaborating with fog computing characterized by its strong edge power, ICN will become the development trend of the future network. The emergence of Information-Centric Multimedia Network (ICMN) can meet the increasing demand for transmission of multimedia streams in the current Internet environment. The data transmission has become more delay-constrained and convenient because of the distributed storage, the separation between the location of information and terminals, and the strong cacheability of each node in ICN. However, at the same time, the security of the multimedia streams in the delivery process still requires further protection against wiretapping, interception or attacking. In this paper, we propose the delay-constrained green security communications for ICMN based on chaotic encryption and fog computing so as to transmit multimedia streams in a more secure and time-saving way. We adapt a chaotic cryptographic method to ICMN, implementing the encryption and decryption of multimedia streams. Meanwhile, the network edge capability to process the encryption and decryption is enhanced. Thanks to the fog computing, the strengthened transmission speed of the multimedia streams can fulfill the need for short latency. The work in the paper is of great significance to improve the green security communications of multimedia streams in ICMN.
Suksomboon, Kalika, Shen, Zhishu, Ueda, Kazuaki, Tagami, Atsushi.  2019.  C2P2: Content-Centric Privacy Platform for Privacy-Preserving Monitoring Services. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:252–261.
Motivated by ubiquitous surveillance cameras in a smart city, a monitoring service can be provided to citizens. However, the rise of privacy concerns may disrupt this advanced service. Yet, the existing cloud-based services have not clearly proven that they can preserve Wth-privacy in which the relationship of three types of information, i.e., who requests the service, what the target is and where the camera is, does not leak. We address this problem by proposing a content-centric privacy platform (C2P2) that enables the construction of a Wth-privacy-preserving monitoring service without cloud dependency. C2P2 uses an image classification model of a target serving as the key to access the monitoring service specific to the target. In C2P2, communication is based on information-centric networking (ICN) that enables privacy preservation to be centered on the content itself rather than relying on a centralized system. Moreover, to preserve the privacy of bystanders, C2P2 separates the sensitive information (e.g., human faces) from the non-sensitive information (e.g., image background), while the privacy-aware forwarding strategies in C2P2 enable data aggregation and prevent privacy leakage resulting from false positive of image recognition. We evaluate the privacy leakage of C2P2 compared to that of the cloud-based system. The privacy analysis shows that, compared to the cloud-based system, C2P2 achieves a lower privacy loss ratio while reducing the communication cost significantly.
Srinivasan, Shruthi, Mazumdar, Arka Prokash.  2019.  Mitigating Content Poisoning in Content Centric Network: A Lightweight Approach. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
The internet paradigm was designed to forward packets from host-to-host. But nowadays the focal point has moved to data. The Internet Centric Network (ICN) provides architectures to meet this requirement. The Content Centric Network (CCN) is the most widely used ICN architecture. Information Centric Network's ability to perform in-network caching lead to faster retrieval of data on subsequent request. Although latency is solved, caching in a router makes it vulnerable to attacks that focus on the cache. One such attack is content poisoning, that will fill the router with poisoned content making the end user difficult to retrieve original valid data. In this paper, we propose a solution to mitigate content poisoning attack that will consume minimum time and require minimal storage overhead during the verification process.
Shen, Qili, Wu, Jun, Li, Jianhua.  2019.  Edge Learning Based Green Content Distribution for Information-Centric Internet of Things. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :67–70.
Being the revolutionary future networking architecture, information-centric networking (ICN) conducts network distribution based on content, which is ideally suitable for Internet of things (IoT). With the rapid growth of network traffic, compared to the conventional IoT, information-centric Internet of things (IC-IoT) is expected to provide users with the better satisfaction of the network quality of service (QoS). However, due to IC-IoT requirements of low latency, large data volume, marginalization, and intelligent processing, it urgently needs an efficient content distribution system. In this paper, we propose an edge learning based green content distribution scheme for IC-IoT. We implement intelligent path selection based on decision tree and edge calculation. Moreover, we apply distributed coding based content transmission to enhance the speed and recovery capability of content. Meanwhile, we have verified the effectiveness and performance of this scheme based on a large number of simulation experiments. The work of this paper is of great significance to improve the efficiency and flexibility of content distribution in IC-IoT.
Saadeh, Huda, Almobaideen, Wesam, Sabri, Khair Eddin, Saadeh, Maha.  2019.  Hybrid SDN-ICN Architecture Design for the Internet of Things. 2019 Sixth International Conference on Software Defined Systems (SDS). :96–101.
Internet of Things (IoT) impacts the current network with many challenges due to the variation, heterogeneity of its devices and running technologies. For those reasons, monitoring and controlling network efficiently can rise the performance of the network and adapts network techniques according to environment measurements. This paper proposes a new privacy aware-IoT architecture that combines the benefits of both Information Centric Network (ICN) and Software Defined Network (SDN) paradigms. In this architecture controlling functionalities are distributed over multiple planes: operational plane which is considered as smart ICN data plane with Controllers that control local clusters, tactical plane which is an Edge environment to take controlling decisions based on small number of clusters, and strategic plane which is a cloud controlling environment to make long-term decision that affects the whole network. Deployment options of this architecture is discussed and SDN enhancement due to in-network caching is evaluated.
Pahl, Marc-Oliver, Liebald, Stefan.  2019.  Information-Centric IoT Middleware Overlay: VSL. 2019 International Conference on Networked Systems (NetSys). :1–8.
The heart of the Internet of Things (IoT) is data. IoT services processes data from sensors that interface their physical surroundings, and from other software such as Internet weather databases. They produce data to control physical environments via actuators, and offer data to other services. More recently, service-centric designs for managing the IoT have been proposed. Data-centric or name-based communication architectures complement these developments very well. Especially for edge-based or site-local installations, data-centric Internet architectures can be implemented already today, as they do not require any changes at the core. We present the Virtual State Layer (VSL), a site-local data-centric architecture for the IoT. Special features of our solution are full separation of logic and data in IoT services, offering the data-centric VSL interface directly to developers, which significantly reduces the overall system complexity, explicit data modeling, a semantically-rich data item lookup, stream connections between services, and security-by-design. We evaluate our solution regarding usability, performance, scalability, resilience, energy efficiency, and security.
Mai, Hoang Long, Aouadj, Messaoud, Doyen, Guillaume, Mallouli, Wissam, de Oca, Edgardo Montes, Festor, Olivier.  2019.  Toward Content-Oriented Orchestration: SDN and NFV as Enabling Technologies for NDN. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :594–598.
Network Function Virtualization (NFV) is a novel paradigm which enables the deployment of network functions on commodity hardware. As such, it also stands for a deployment en-abler for any novel networking function or networking paradigm such as Named Data Networking (NDN), the most promising solution relying on the Information-Centric Networking (ICN) paradigm. However, dedicated solutions for the security and performance orchestration of such an emerging paradigm are still lacking thus preventing its adoption by network operators. In this paper, we propose a first step toward a content-oriented orchestration whose purpose is to deploy, manage and secure an NDN virtual network. We present the way we leverage the TOSCA standard, using a crafted NDN oriented extension to enable the specification of both deployment and operational behavior requirements of NDN services. We also highlight NDN-related security and performance policies to produce counter-measures against anomalies that can either come from attacks or performance incidents.
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.  2019.  SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.  2019.  NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
Marchal, Xavier, Cholez, Thibault, Festor, Olivier.  2018.  $M$NDN: An Orchestrated Microservice Architecture for Named Data Networking. Proceedings of the 5th ACM Conference on Information-Centric Networking. :12-23.

As an extension of Network Function Virtualization, microservice architectures are a promising way to design future network services. At the same time, Information-Centric Networking architectures like NDN would benefit from this paradigm to offer more design choices for the network architect while facilitating the deployment and the operation of the network. We propose $μ$NDN, an orchestrated suite of microservices as an alternative way to implement NDN forwarding and support functions. We describe seven essential micro-services we developed, explain the design choices behind our solution and how it is orchestrated. We evaluate each service in isolation and the entire microservice architecture through two realistic scenarios to show its ability to react and mitigate some performance and security issues thanks to the orchestration. Our results show that $μ$NDN can replace a monolithic NDN forwarder while being more powerful and scalable.

Sertbaş, Nurefşan, Aytaç, Samet, Ermiş, Orhan, Alagöz, Fatih, Gür, Gürkan.  2018.  Attribute Based Content Security and Caching in Information Centric IoT. Proceedings of the 13th International Conference on Availability, Reliability and Security. :34:1–34:8.

Information-centric networking (ICN) is a Future Internet paradigm which uses named information (data objects) instead of host-based end-to-end communications. In-network caching is a key pillar of ICN. Basically, data objects are cached in ICN routers and retrieved from these network elements upon availability when they are requested. It is a particularly promising networking approach due to the expected benefits of data dissemination efficiency, reduced delay and improved robustness for challenging communication scenarios in IoT domain. From the security perspective, ICN concentrates on securing data objects instead of ensuring the security of end-to-end communication link. However, it inherently involves the security challenge of access control for content. Thus, an efficient access control mechanism is crucial to provide secure information dissemination. In this work, we investigate Attribute Based Encryption (ABE) as an access control apparatus for information centric IoT. Moreover, we elaborate on how such a system performs for different parameter settings such as different numbers of attributes and file sizes.

Mai, H. L., Nguyen, T., Doyen, G., Cogranne, R., Mallouli, W., Oca, E. M. de, Festor, O..  2018.  Towards a security monitoring plane for named data networking and its application against content poisoning attack. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–9.

Named Data Networking (NDN) is the most mature proposal of the Information Centric Networking paradigm, a clean-slate approach for the Future Internet. Although NDN was designed to tackle security issues inherent to IP networks natively, newly introduced security attacks in its transitional phase threaten NDN's practical deployment. Therefore, a security monitoring plane for NDN is indispensable before any potential deployment of this novel architecture in an operating context by any provider. We propose an approach for the monitoring and anomaly detection in NDN nodes leveraging Bayesian Network techniques. A list of monitored metrics is introduced as a quantitative measure to feature the behavior of an NDN node. By leveraging the hypothesis testing theory, a micro detector is developed to detect whenever the metric significantly changes from its normal behavior. A Bayesian network structure that correlates alarms from micro detectors is designed based on the expert knowledge of the NDN specification and the NFD implementation. The relevance and performance of our security monitoring approach are demonstrated by considering the Content Poisoning Attack (CPA), one of the most critical attacks in NDN, through numerous experiment data collected from a real NDN deployment.

Xia, S., Li, N., Xiaofeng, T., Fang, C..  2018.  Multiple Attributes Based Spoofing Detection Using an Improved Clustering Algorithm in Mobile Edge Network. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :242–243.

Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.

Mtsweni, Jabu, Gcaza, Noluxolo, Thaba, Mphahlele.  2018.  A Unified Cybersecurity Framework for Complex Environments. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :1–9.
Information and Communication Technologies (ICTs) present a number of vulnerabilities, threats and risks that could lead to devastating cyber-attacks resulting into huge financial losses, legal implications, and reputational damage for large and small organizations. As such, in this digital transformation and 4th industrial revolution era, nations and organizations have accepted that cybersecurity must be part of their strategic objectives and priorities. However, cybersecurity in itself is a multifaceted problem to address and the voluntary "one-size-fits-all" cybersecurity approaches have proven not effective in dealing with cyber incidents, especially in complex operational environments (e.g. large technology-centric organizations) that are multi-disciplinary, multi-departmental, multi-role, multinational, and operating across different locations. Addressing modern cybersecurity challenges requires more than a technical solution. A contextual and systematic approach that considers the complexities of these large digital environments in order to achieve resilient, sustainable, cost-effective and proactive cybersecurity is desirable. This paper aims to highlight through a single case study approach the multifaceted nature and complexity of the cybersecurity environment, pertinently in multi-disciplinary organizations. Essentially, this paper contributes a unified cybersecurity framework underpinned by an integrated capability management (ICM) approach that addresses the multifaceted nature of cybersecurity as well as the challenges and requirements eminent in complex environments, such as national government, municipalities or large corporations. The unified framework incorporates realistic and practical guidelines to bridge the gap between cybersecurity capability requirements, governance instruments and cybersecurity capability specification, implementation, employment and sustainment drawing from well-tested military capability development approaches.
Yuen, W. P., Chuah, K. B..  2018.  Development of the Customer Centric Data Visibility Framework for the Enhancement of the Trust of SME Customers in Cloud Services. Proceedings of the 6th International Conference on Information and Education Technology. :221–225.
Cloud computing is a pervasive technology and platform in IT for several years. Cloud service providers have developed and offered different service platforms to accommodate different needs of enterprise subscribers. However, there still exists the situation of enterprise customers' hesitation and reluctance to deploy their core applications using cloud service platforms. The term data visibility has been widely used in the IT industry especially from ICT product and solution vendors. However, there is not any practice guideline, nor standard in industry to define this term. This paper defined the characteristic and dimensions of data visibility, from conceptual model to framework architecture of customer centric data visibility (CCDV) on cloud platform. It propose to apply CCDV as reference model or practice guideline on cloud computing service, with enhancement of data visibility which can earn the trust from enterprise customer in adopting public cloud service.
Zhang, Zhiyi, Lu, Edward, Li, Yanbiao, Zhang, Lixia, Yu, Tianyuan, Pesavento, Davide, Shi, Junxiao, Benmohamed, Lotfi.  2018.  NDNoT: A Framework for Named Data Network of Things. Proceedings of the 5th ACM Conference on Information-Centric Networking. :200–201.
The Named Data Networking (NDN) architecture provides simple solutions to the communication needs of Internet of Things (IoT) in terms of ease-of-use, security, and content delivery. To utilize the desirable properties of NDN architecture in IoT scenarios, we are working to provide an integrated framework, dubbed NDNoT, to support IoT over NDN. NDNoT provides solutions to auto configuration, service discovery, data-centric security, content delivery, and other needs of IoT application developers. Utilizing NDN naming conventions, NDNoT aims to create an open environment where IoT applications and different services can easily cooperate and work together. This poster introduces the basic components of our framework and explains how these components function together.
Chakraborti, Asit, Amin, Syed Obaid, Azgin, Aytac, Misra, Satyajayant, Ravindran, Ravishankar.  2018.  Using ICN Slicing Framework to Build an IoT Edge Network. Proceedings of the 5th ACM Conference on Information-Centric Networking. :214–215.
We demonstrate 5G network slicing as a unique deployment opportunity for information centric networking (ICN), by using a generic service orchestration framework that operates on commodity compute, storage, and bandwidth resource pools to realize ICN service slices. In this demo, we specifically propose a service slice for the IoT Edge network. ICN has often been considered pertinent for IoT use due to its benefits like simpler stacks on resource constrained devices, in-network caching, and in-built data provenance. We use a lightweight ICN stack on IoT devices connected with sensors and actuators to build a network, where clients can set realistic policies using their legacy hand-held devices. We employ name based authentication protocols between the service end-points and IoT devices to allow secure onboarding. The IoT slice co-exists with other service slices that cater to different classes of applications (e.g., bandwidth intensive applications, such as video conferencing) allowing resource management flexibility. Our design creates orchestrated service Edge functions to which the clients connect, and these can in turn utilize in-network stateless functions to perform tasks, such as decision making and analytics using the available compute resources efficiently.
Marchal, Xavier, Cholez, Thibault, Festor, Olivier.  2018.  ΜNDN: An Orchestrated Microservice Architecture for Named Data Networking. Proceedings of the 5th ACM Conference on Information-Centric Networking. :12–23.
As an extension of Network Function Virtualization, microservice architectures are a promising way to design future network services. At the same time, Information-Centric Networking architectures like NDN would benefit from this paradigm to offer more design choices for the network architect while facilitating the deployment and the operation of the network. We propose μNDN, an orchestrated suite of microservices as an alternative way to implement NDN forwarding and support functions. We describe seven essential micro-services we developed, explain the design choices behind our solution and how it is orchestrated. We evaluate each service in isolation and the entire microservice architecture through two realistic scenarios to show its ability to react and mitigate some performance and security issues thanks to the orchestration. Our results show that μNDN can replace a monolithic NDN forwarder while being more powerful and scalable.
Kita, Kentaro, Kurihara, Yoshiki, Koizumi, Yuki, Hasegawa, Toru.  2018.  Location Privacy Protection with a Semi-honest Anonymizer in Information Centric Networking. Proceedings of the 5th ACM Conference on Information-Centric Networking. :95–105.
Location-based services, which provide services based on locations of consumers' interests, are becoming essential for our daily lives. Since the location of a consumer's interest contains private information, several studies propose location privacy protection mechanisms using an anonymizer, which sends queries specifying anonymous location sets, each of which contains k - 1 locations in addition to a location of a consumer's interest, to an LBS provider based on the k-anonymity principle. The anonymizer is, however, assumed to be trusted/honest, and hence it is a single point of failure in terms of privacy leakage. To address this privacy issue, this paper designs a semi-honest anonymizer to protect location privacy in NDN networks. This study first reveals that session anonymity and location anonymity must be achieved to protect location privacy with a semi-honest anonymizer. Session anonymity is to hide who specifies which anonymous location set and location anonymity is to hide a location of a consumer's interest in a crowd of locations. We next design an architecture to achieve session anonymity and an algorithm to generate anonymous location sets achieving location anonymity. Our evaluations show that the architecture incurs marginal overhead to achieve session anonymity and anonymous location sets generated by the algorithm sufficiently achieve location anonymity.
Suksomboon, Kalika, Ueda, Kazuaki, Tagami, Atsushi.  2018.  Content-centric Privacy Model for Monitoring Services in Surveillance Systems. Proceedings of the 5th ACM Conference on Information-Centric Networking. :190–191.
This paper proposes a content-centric privacy (CCP) model that enables a privacy-preserving monitoring services in surveillance systems without cloud dependency. We design a simple yet powerful method that could not be obtained from a cloud-like system. The CCP model includes two key ideas: (1) the separation of the private data (i.e., target object images) from the public data (i.e., background images), and (2) the service authentication with the classification model. Deploying the CCP model over ICN enables the privacy central around the content itself rather than relying on a cloud system. Our preliminary analysis shows that the ICN-based CCP model can preserve privacy with respect to the W3 -privacy in which the private information of target object are decoupled from the queries and cameras.
Kim, Sung-Yeon, Robitzsch, Sebastian, Trossen, Dirk, Reed, Martin, Al-Naday, Mays, Riihijärvi, Janne.  2016.  Realizing IP-based Services over an Information-Centric Networking Transport Network. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :215–216.

Information-centric networking (ICN) has been actively studied as a promising alternative to the IP-based Internet architecture with potential benefits in terms of network efficiency, privacy, security, and novel applications. However, it is difficult to adopt such wholesale replacement of the IP-based Internet to a new routing and service infrastructure due to the conflict among existing stakeholders, market players, and solution providers. To overcome these difficulties, we provide an evolutionary approach by which we enable the expected benefits of ICN for existing services. The demonstration shows that these benefits can be efficiently introduced and work with existing IP end-systems.

Malik, Adeel Mohammad, Borgh, Joakim, Ohlman, Börje.  2016.  Attribute-Based Encryption on a Resource Constrained Sensor in an Information-Centric Network. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :217–218.

The Information-Centric Networking (ICN) paradigm is drastically different from traditional host-centric IP networking. As a consequence of the disparity between the two, the security models are also very different. The security model for IP is based on securing the end-to-end communication link between the communicating nodes whereas the ICN security model is based on securing data objects often termed as Object Security. Just like the traditional security model, Object security also poses a challenge of key management. This is especially concerning for ICN as data cached in its encrypted form should be usable by several different users. Attribute-Based Encryption (ABE) alleviates this problem by enabling data to be encrypted under a policy that suits several different types of users. Users with different sets of attributes can potentially decrypt the data hence eliminating the need to encrypt the data separately for each type of user. ABE is a more processing intensive task compared to traditional public key encryption methods hence posing a challenge for resource constrained environments with devices that have low memory and battery power. In this demo we show ABE encryption carried out on a resource constrained sensor platform. Encrypted data is transported over an ICN network and is decrypted only by clients that have the correct set of attributes.

Ghali, Cesar, Tsudik, Gene, Wood, Christopher A..  2016.  Network Names in Content-Centric Networking. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :132–141.

Content-centric networking (CCN) is a networking paradigm that emphasizes request-response-based data transfer. A \\textbackslashem consumer\ issues a request explicitly referencing desired data by name. A \\textbackslashem producer\ assigns a name to each data it publishes. Names are used both to identify data to and route traffic between consumers and producers. The type, format, and representation of names are fundamental to CCN. Currently, names are represented as human-readable application-layer URIs. This has several important security and performance implications for the network. In this paper, we propose to transparently decouple application-layer names from their network-layer counterparts. We demonstrate a mapping between the two namespaces that can be deterministically computed by consumers and producers, using application names formatted according to the standard CCN URI scheme. Meanwhile, consumers and producers can continue to use application-layer names. We detail the computation and mapping function requirements and discuss their impact on consumers, producers, and routers. Finally, we comprehensively analyze several mapping functions to show their functional equivalence to standard application names and argue that they address several issues that stem from propagating application names into the network.

Marxer, Claudio, Scherb, Christopher, Tschudin, Christian.  2016.  Access-Controlled In-Network Processing of Named Data. Proceedings of the 3rd ACM Conference on Information-Centric Networking. :77–82.

In content-based security, encrypted content as well as wrapped access keys are made freely available by an Information Centric Network: Only those clients which are able to unwrap the encryption key can access the protected content. In this paper we extend this model to computation chains where derived data (e.g. produced by a Named Function Network) also has to comply to the content-based security approach. A central problem to solve is the synchronized on-demand publishing of encrypted results and wrapped keys as well as defining the set of consumers which are authorized to access the derived data. In this paper we introduce "content-attendant policies" and report on a running prototype that demonstrates how to enforce data owner-defined access control policies despite fully decentralized and arbitrarily long computation chains.