Phan, Trung V., Islam, Syed Tasnimul, Nguyen, Tri Gia, Bauschert, Thomas.
2019.
Q-DATA: Enhanced Traffic Flow Monitoring in Software-Defined Networks applying Q-learning. 2019 15th International Conference on Network and Service Management (CNSM). :1–9.
Software-Defined Networking (SDN) introduces a centralized network control and management by separating the data plane from the control plane which facilitates traffic flow monitoring, security analysis and policy formulation. However, it is challenging to choose a proper degree of traffic flow handling granularity while proactively protecting forwarding devices from getting overloaded. In this paper, we propose a novel traffic flow matching control framework called Q-DATA that applies reinforcement learning in order to enhance the traffic flow monitoring performance in SDN based networks and prevent traffic forwarding performance degradation. We first describe and analyse an SDN-based traffic flow matching control system that applies a reinforcement learning approach based on Q-learning algorithm in order to maximize the traffic flow granularity. It also considers the forwarding performance status of the SDN switches derived from a Support Vector Machine based algorithm. Next, we outline the Q-DATA framework that incorporates the optimal traffic flow matching policy derived from the traffic flow matching control system to efficiently provide the most detailed traffic flow information that other mechanisms require. Our novel approach is realized as a REST SDN application and evaluated in an SDN environment. Through comprehensive experiments, the results show that-compared to the default behavior of common SDN controllers and to our previous DATA mechanism-the new Q-DATA framework yields a remarkable improvement in terms of traffic forwarding performance degradation protection of SDN switches while still providing the most detailed traffic flow information on demand.
O’Raw, John, Laverty, David, Morrow, D. John.
2019.
Securing the Industrial Internet of Things for Critical Infrastructure (IIoT-CI). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :70–75.
The Industrial Internet of Things (IIoT) is a term applied to the industrial application of M2M devices. The security of IIoT devices is a difficult problem and where the automation of critical infrastructure is intended, risks may be unacceptable. Remote attacks are a significant threat and solutions are sought which are secure by default. The problem space may be analyzed using threat modelling methods. Software Defined Networks (SDN) provide mitigation for remote attacks which exploit local area networks. Similar concepts applied to the WAN may improve availability and performance and provide granular data on link characteristics. Schemes such as the Software Defined Perimeter allow IIoT devices to communicate on the Internet, mitigating avenues of remote attack. Finally, separation of duties at the IIoT device may prevent attacks on the integrity of the device or the confidentiality and integrity of its communications. Work remains to be done on the mitigation of DDoS.
Dechand, Sergej, Naiakshina, Alena, Danilova, Anastasia, Smith, Matthew.
2019.
In Encryption We Don’t Trust: The Effect of End-to-End Encryption to the Masses on User Perception. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :401–415.
With WhatsApp's adoption of the Signal Protocol as its default, end-to-end encryption by the masses happened almost overnight. Unlike iMessage, WhatsApp notifies users that encryption is enabled, explicitly informing users about improved privacy. This rare feature gives us an opportunity to study people's understandings and perceptions of secure messaging pre-and post-mass messenger encryption (pre/post-MME). To study changes in perceptions, we compared the results of two mental models studies: one conducted in 2015 pre-MME and one in 2017 post-MME. Our primary finding is that users do not trust encryption as currently offered. When asked about encryption in the study, most stated that they had heard of encryption, but only a few understood the implications, even on a high level. Their consensus view was that no technical solution to stop skilled attackers from getting their data exists. Even with a major development, such as WhatsApp rolling out end-to-end encryption, people still do not feel well protected by their technology. Surprisingly, despite WhatsApp's end-to-end security info messages and the high media attention, the majority of the participants were not even aware of encryption. Most participants had an almost correct threat model, but don't believe that there is a technical solution to stop knowledgeable attackers to read their messages. Using technology made them feel vulnerable.
Khurana, Madhu, Malik, Priyanka, Puneet, Shweta.
2020.
Network Security Monitoring (NSM): Can it be Effective in a World with Encrypted Traffic? 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :140–144.
HTTPS is gaining widespread popularity for secure transactions. Most popular sites have made default choice as HTTPS. This development of encrypted traffic has brought in new challenges in the areas of network security monitoring and analysis. This paper makes a survey through various study done in the area on novel approaches for identification and investigating HTTPS traffic and its effect on network security monitoring. This work makes a complete analysis and evaluation of HTTPS protocol-is it ensuring security or are we entering in a vicious cycle of finding weaknesses and tryingto fill the gaps in Network security Monitoring. There are couple of vacuums that exist along with encrypted data, namely firewalls, IDS becoming blind to data being exchanged, enhancing vulnerabilities by making it tough to implement security policy and probability of malicious activities hidingin the ciphered traffic. Most of the current techniques namely DPI to port based to IP address to DNS to SNI filtering is prone to be ineffective in front of HTTPS traffic. The emphasis is upon the new ways to explore the expanding HTTPS volume with security breaches to cover new challenges related to Network Security Monitoring. Data collected from couple of up to date research and their conclusion hasbeen discussed to provide a brief overview so as to provide the reader with an in-depth understanding of the research progress in thisarea.
Lange, Thomas, Kettani, Houssain.
2019.
On Security Threats of Botnets to Cyber Systems. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :176–183.
As the dynamics of cyber warfare continue to change, it is very important to be aware of the issues currently confronting cyberspace. One threat which continues to grow in the danger it poses to cyber security are botnets. Botnets can launch massive Distributed Denial of Service (DDoS) attacks against internet connected hosts anonymously, undertake intricate spam campaigns, launch mass financial fraud campaigns, and even manipulate public opinion via social media bots. The network topology and technology undergirding each botnet varies greatly, as do the motivations commonly behind such networks. Furthermore, as botnets have continued to evolve, many newer ones demonstrate increased levels of anonymity and sophistication, making it more difficult to effectively counter them. Increases in the production of vulnerable Internet of Things (IoT) devices has made it easier for malicious actors to quickly assemble sizable botnets. Because of this, the steps necessary to stop botnets also vary, and in some cases, it may be extremely difficult to effectively defeat a fully functional and sophisticated botnet. While in some cases, the infrastructure supporting the botnet can be targeted and remotely disabled, other cases require the physical assistance of law enforcement to shut down the botnet. In the latter case, it is often a significant challenge to cheaply end a botnet. On the other hand, there are many steps and mitigations that can be taken by end-users to prevent their own devices from becoming part of a botnet. Many of these solutions involve implementing basic cybersecurity practices like installing firewalls and changing default passwords. More sophisticated botnets may require similarly sophisticated intrusion detection systems, to detect and remove malicious infections. Much research has gone into such systems and in recent years many researchers have begun to implement machine learning techniques to defeat botnets. This paper is intended present a review on botnet evolution, trends and mitigations, and offer related examples and research to provide the reader with quick access to a broad understanding of the issues at hand.
Morishita, Shun, Hoizumi, Takuya, Ueno, Wataru, Tanabe, Rui, Gañán, Carlos, van Eeten, Michel J.G., Yoshioka, Katsunari, Matsumoto, Tsutomu.
2019.
Detect Me If You… Oh Wait. An Internet-Wide View of Self-Revealing Honeypots. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :134–143.
Open-source honeypots are a vital component in the protection of networks and the observation of trends in the threat landscape. Their open nature also enables adversaries to identify the characteristics of these honeypots in order to detect and avoid them. In this study, we investigate the prevalence of 14 open- source honeypots running more or less default configurations, making them easily detectable by attackers. We deploy 20 simple signatures and test them for false positives against servers for domains in the Alexa top 10,000, official FTP mirrors, mail servers in real operation, and real IoT devices running telnet. We find no matches, suggesting good accuracy. We then measure the Internet-wide prevalence of default open-source honeypots by matching the signatures with Censys scan data and our own scans. We discovered 19,208 honeypots across 637 Autonomous Systems that are trivially easy to identify. Concentrations are found in research networks, but also in enterprise, cloud and hosting networks. While some of these honeypots probably have no operational relevance, e.g., they are student projects, this explanation does not fit the wider population. One cluster of honeypots was confirmed to belong to a well-known security center and was in use for ongoing attack monitoring. Concentrations in an another cluster appear to be the result of government incentives. We contacted 11 honeypot operators and received response from 4 operators, suggesting the problem of lack of network hygiene. Finally, we find that some honeypots are actively abused by attackers for hosting malicious binaries. We notified the owners of the detected honeypots via their network operators and provided recommendations for customization to avoid simple signature-based detection. We also shared our results with the honeypot developers.
Ruehrup, Stefan, Krenn, Stephan.
2019.
Towards Privacy in Geographic Message Dissemination for Connected Vehicles. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). :1–6.
With geographic message dissemination, connected vehicles can be served with traffic information in their proximity, thereby positively impacting road safety, traffic management, or routing. Since such messages are typically relevant in a small geographic area, servers only distribute messages to affected vehicles for efficiency reasons. One main challenge is to maintain scalability of the server infrastructure when collecting location updates from vehicles and determining the relevant group of vehicles when messages are distributed to a geographic relevance area, while at the same time respecting the individual user's privacy in accordance with legal regulations. In this paper, we present a framework for geographic message dissemination following the privacy-by-design and privacy-by-default principles, without having to accept efficiency drawbacks compared to conventional server-client based approaches.
Wadsworth, Anthony, Thanoon, Mohammed I., McCurry, Charles, Sabatto, Saleh Zein.
2019.
Development of IIoT Monitoring and Control Security Scheme for Cyber Physical Systems. 2019 SoutheastCon. :1–5.
Industry 4.0 or the fourth industrial revolution encapsulates future industry development trends to achieve more intelligent manufacturing processes, including reliance on Cyber Physical Systems (CPS). The increase in online access and control given by the incorporation of CPSs introduces a new challenge securing the operations of the CPS in that they are not supported by standard security protocols. This paper describes a process used to effectively protect the operations of an IIoT system by implementing security protocols on the CPS within the IIoT. A series of predefined boundary conditions of the safety critical parameters for which a heating and cooling CPS can safely operate within were established. If the CPS is commended to operate outside of these boundaries, it will disconnect from all external communication network and default to some pre-defined safe-operation mode until the system has been evaluated locally by an administrator and released from the safe-mode. This method was tested and validated by establishing a sample IIoT and CPS testbed setup which monitor and control the temperature of a target environment. An attack was initiated to force the target environment outside of the determined safety-critical parameters. The system responded by disabling all network ports and defaulted to the safe-operation mode established previously.
Chowdhury, Nahida Sultana, Raje, Rajeev R..
2019.
SERS: A Security-Related and Evidence-Based Ranking Scheme for Mobile Apps. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :130–139.
In recent years, the number of smart mobile devices has rapidly increased worldwide. This explosion of continuously connected mobile devices has resulted in an exponential growth in the number of publically available mobile Apps. To facilitate the selection of mobile Apps, from various available choices, the App distribution platforms typically rank/recommend Apps based on average star ratings, the number of downloads, and associated reviews - the external aspect of an App. However, these ranking schemes typically tend to ignore critical internal aspects (e.g., security vulnerabilities) of the Apps. Such an omission of internal aspects is certainly not desirable, especially when many of the users do not possess the necessary skills to evaluate the internal aspects and choose an App based on the default ranking scheme which uses the external aspect. In this paper, we build upon our earlier efforts by focusing specifically on the security-related internal aspect of an App and its combination with the external aspect computed from the user reviews by identifying security-related comments.We use this combination to rank-order similar Apps. We evaluate our approach on publicly available Apps from the Google PlayStore and compare our ranking with prevalent ranking techniques such as the average star ratings. The experimental results indicate the effectiveness of our proposed approach.