Visible to the public Biblio

Filters: Keyword is ICS Anomaly Detection  [Clear All Filters]
2022-09-30
Xin, Chen, Xianda, Liu, Yiheng, Jiang, Chen, Wang.  2021.  The Trust Evaluation and Anomaly Detection Model of Industrial Control Equipment Based on Multiservice and Multi-attribute. 2021 7th International Conference on Computer and Communications (ICCC). :1575–1581.
In the industrial control system, in order to solve the problem that the installation of smart devices in a transparent environment are faced with the unknown attack problems, because most of the industrial control equipment to detect unknown risks, Therefore, by studying the security protection of the current industrial control system and the trust mechanism that should be widely used in the Internet of things, this paper presents the abnormal node detection mode based on comprehensive trust applied to the industrial control system scenarios. This model firstly proposes a model, which fuses direct and indirect trust values into current trust values through support algorithm and vector similarity algorithm, and then combines them with historical trust values, and gives the calculation method of each trust value. Finally, a method to determine abnormal nodes based on comprehensive trust degree is given to realize a detection process for all industrial control nodes. By analyzing the real data case provided by Melbourne Water, it is concluded that this model can improve the detection range and detection accuracy of abnormal nodes. It can accurately judge and effectively resist malicious behavior and also have a good resistance to aggression.
Alqurashi, Saja, Shirazi, Hossein, Ray, Indrakshi.  2021.  On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in Industrial Control Systems Networks. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–6.
With an increasing number of adversarial attacks against Industrial Control Systems (ICS) networks, enhancing the security of such systems is invaluable. Although attack prevention strategies are often in place, protecting against all attacks, especially zero-day attacks, is becoming impossible. Intrusion Detection Systems (IDS) are needed to detect such attacks promptly. Machine learning-based detection systems, especially deep learning algorithms, have shown promising results and outperformed other approaches. In this paper, we study the efficacy of a deep learning approach, namely, Multi Layer Perceptron (MLP), in detecting abnormal behaviors in ICS network traffic. We focus on very common reconnaissance attacks in ICS networks. In such attacks, the adversary focuses on gathering information about the targeted network. To evaluate our approach, we compare MLP with isolation Forest (i Forest), a statistical machine learning approach. Our proposed deep learning approach achieves an accuracy of more than 99% while i Forest achieves only 75%. This helps to reinforce the promise of using deep learning techniques for anomaly detection.
Burgetová, Ivana, Matoušek, Petr, Ryšavý, Ondřej.  2021.  Anomaly Detection of ICS Communication Using Statistical Models. 2021 17th International Conference on Network and Service Management (CNSM). :166–172.
Industrial Control System (ICS) transmits control and monitoring data between devices in an industrial environment that includes smart grids, water and gas distribution, or traffic control. Unlike traditional internet communication, ICS traffic is stable, periodical, and with regular communication patterns that can be described using statistical modeling. By observing selected features of ICS transmission, e.g., packet direction and inter-arrival times, we can create a statistical profile of the communication based on distribution of features learned from the normal ICS traffic. This paper demonstrates that using statistical modeling, we can detect various anomalies caused by irregular transmissions, device or link failures, and also cyber attacks like packet injection, scanning, or denial of service (DoS). The paper shows how a statistical model is automatically created from a training dataset. We present two types of statistical profiles: the master-oriented profile for one-to-many communication and the peer-to-peer profile that describes traffic between two ICS devices. The proposed approach is fast and easy to implement as a part of an intrusion detection system (IDS) or an anomaly detection (AD) module. The proof-of-concept is demonstrated on two industrial protocols: IEC 60870-5-104 (aka IEC 104) and IEC 61850 (Goose).
Baptiste, Millot, Julien, Francq, Franck, Sicard.  2021.  Systematic and Efficient Anomaly Detection Framework using Machine Learning on Public ICS Datasets. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :292–297.
Industrial Control Systems (ICSs) are used in several domains such as Transportation, Manufacturing, Defense and Power Generation and Distribution. ICSs deal with complex physical systems in order to achieve an industrial purpose with operational safety. Security has not been taken into account by design in these systems that makes them vulnerable to cyberattacks.In this paper, we rely on existing public ICS datasets as well as on the existing literature of Machine Learning (ML) applications for anomaly detection in ICSs in order to improve detection scores. To perform this purpose, we propose a systematic framework, relying on established ML algorithms and suitable data preprocessing methods, which allows us to quickly get efficient, and surprisingly, better results than the literature. Finally, some recommendations for future public ICS dataset generations end this paper, which would be fruitful for improving future attack detection models and then protect new ICSs designed in the next future.
Wüstrich, Lars, Schröder, Lukas, Pahl, Marc-Oliver.  2021.  Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
Matoušek, Petr, Havlena, Vojtech, Holík, Lukáš.  2021.  Efficient Modelling of ICS Communication For Anomaly Detection Using Probabilistic Automata. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :81–89.
Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we focus on modelling the semantics of ICS communication obtained from the IPFIX flows that describes typical conversational patterns. This paper presents a technique for modelling ICS conversations using frequency prefix trees and Deterministic Probabilistic Automata (DPA). As demonstrated on the attack scenarios, these models are efficient to detect common cyber attacks like the command injection, packet manipulation, network scanning, or lost connection. An important advantage of our approach is that the proposed technique can be easily integrated into common security information and event management (SIEM) systems with Netflow/IPFIX support. Our experiments are performed on IEC 60870-5-104 (aka IEC 104) control communication that is widely used for the substation control in smart grids.
Yu, Dongqing, Hou, Xiaowei, Li, Ce, Lv, Qiujian, Wang, Yan, Li, Ning.  2021.  Anomaly Detection in Unstructured Logs Using Attention-based Bi-LSTM Network. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). :403–407.
System logs record valuable information about the runtime status of IT systems. Therefore, system logs are a naturally excellent source of information for anomaly detection. Most of the existing studies on log-based anomaly detection construct a detection model to identify anomalous logs. Generally, the model treats historical logs as natural language sequences and learns the normal patterns from normal log sequences, and detects deviations from normal patterns as anomalies. However, the majority of existing methods focus on sequential and quantitative information and ignore semantic information hidden in log sequence so that they are inefficient in anomaly detection. In this paper, we propose a novel framework for automatically detecting log anomalies by utilizing an attention-based Bi-LSTM model. To demonstrate the effectiveness of our proposed model, we evaluate the performance on a public production log dataset. Extensive experimental results show that the proposed approach outperforms all comparison methods for anomaly detection.
2022-06-09
Pyatnitsky, Ilya A., Sokolov, Alexander N..  2021.  Determination of the Optimal Ratio of Normal to Anomalous Points in the Problem of Detecting Anomalies in the Work of Industrial Control Systems. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0478–0480.

Algorithms for unsupervised anomaly detection have proven their effectiveness and flexibility, however, first it is necessary to calculate with what ratio a certain class begins to be considered anomalous by the autoencoder. For this reason, we propose to conduct a study of the efficiency of autoencoders depending on the ratio of anomalous and non-anomalous classes. The emergence of high-speed networks in electric power systems creates a tight interaction of cyberinfrastructure with the physical infrastructure and makes the power system susceptible to cyber penetration and attacks. To address this problem, this paper proposes an innovative approach to develop a specification-based intrusion detection framework that leverages available information provided by components in a contemporary power system. An autoencoder is used to encode the causal relations among the available information to create patterns with temporal state transitions, which are used as features in the proposed intrusion detection. This allows the proposed method to detect anomalies and cyber attacks.

2022-04-25
Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.  2021.  ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.

Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.

2021-12-20
Tekeoglu, Ali, Bekiroglu, Korkut, Chiang, Chen-Fu, Sengupta, Sam.  2021.  Unsupervised Time-Series Based Anomaly Detection in ICS/SCADA Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Traditionally, Industrial Control Systems (ICS) have been operated as air-gapped networks, without a necessity to connect directly to the Internet. With the introduction of the Internet of Things (IoT) paradigm, along with the cloud computing shift in traditional IT environments, ICS systems went through an adaptation period in the recent years, as the Industrial Internet of Things (IIoT) became popular. ICS systems, also called Cyber-Physical-Systems (CPS), operate on physical devices (i.e., actuators, sensors) at the lowest layer. An anomaly that effect this layer, could potentially result in physical damage. Due to the new attack surfaces that came about with IIoT movement, precise, accurate, and prompt intrusion/anomaly detection is becoming even more crucial in ICS. This paper proposes a novel method for real-time intrusion/anomaly detection based on a cyber-physical system network traffic. To evaluate the proposed anomaly detection method's efficiency, we run our implementation against a network trace taken from a Secure Water Treatment Testbed (SWAT) of iTrust Laboratory at Singapore.
2021-03-30
Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S..  2020.  The Anomaly Detection Mechanism Using Extreme Learning Machine for Service Function Chaining. 2020 International Computer Symposium (ICS). :310—315.

The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.

Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

Pyatnisky, I. A., Sokolov, A. N..  2020.  Assessment of the Applicability of Autoencoders in the Problem of Detecting Anomalies in the Work of Industrial Control Systems.. 2020 Global Smart Industry Conference (GloSIC). :234—239.

Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.

Li, Y., Ji, X., Li, C., Xu, X., Yan, W., Yan, X., Chen, Y., Xu, W..  2020.  Cross-domain Anomaly Detection for Power Industrial Control System. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :383—386.

In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.

Gillen, R. E., Carter, J. M., Craig, C., Johnson, J. A., Scott, S. L..  2020.  Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :360—366.

To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.

Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

Lin, T.-H., Jiang, J.-R..  2020.  Anomaly Detection with Autoencoder and Random Forest. 2020 International Computer Symposium (ICS). :96—99.

This paper proposes AERFAD, an anomaly detection method based on the autoencoder and the random forest, for solving the credit card fraud detection problem. The proposed AERFAD first utilizes the autoencoder to reduce the dimensionality of data and then uses the random forest to classify data as anomalous or normal. Large numbers of credit card transaction data of European cardholders are applied to AEFRAD to detect possible frauds for the sake of performance evaluation. When compared with related methods, AERFAD has relatively excellent performance in terms of the accuracy, true positive rate, true negative rate, and Matthews correlation coefficient.

Zhang, R., Cao, Z., Wu, K..  2020.  Tracing and detection of ICS Anomalies Based on Causality Mutations. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :511—517.

The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.

2021-03-29
Alabugin, S. K., Sokolov, A. N..  2020.  Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems. 2020 Global Smart Industry Conference (GloSIC). :199–203.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.

2018-07-18
Vávra, J., Hromada, M..  2017.  Anomaly Detection System Based on Classifier Fusion in ICS Environment. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :32–38.

The detection of cyber-attacks has become a crucial task for highly sophisticated systems like industrial control systems (ICS). These systems are an essential part of critical information infrastructure. Therefore, we can highlight their vital role in contemporary society. The effective and reliable ICS cyber defense is a significant challenge for the cyber security community. Thus, intrusion detection is one of the demanding tasks for the cyber security researchers. In this article, we examine classification problem. The proposed detection system is based on supervised anomaly detection techniques. Moreover, we utilized classifiers algorithms in order to increase intrusion detection capabilities. The fusion of the classifiers is the way how to achieve the predefined goal.

Yusheng, W., Kefeng, F., Yingxu, L., Zenghui, L., Ruikang, Z., Xiangzhen, Y., Lin, L..  2017.  Intrusion Detection of Industrial Control System Based on Modbus TCP Protocol. 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). :156–162.

Modbus over TCP/IP is one of the most popular industrial network protocol that are widely used in critical infrastructures. However, vulnerability of Modbus TCP protocol has attracted widely concern in the public. The traditional intrusion detection methods can identify some intrusion behaviors, but there are still some problems. In this paper, we present an innovative approach, SD-IDS (Stereo Depth IDS), which is designed for perform real-time deep inspection for Modbus TCP traffic. SD-IDS algorithm is composed of two parts: rule extraction and deep inspection. The rule extraction module not only analyzes the characteristics of industrial traffic, but also explores the semantic relationship among the key field in the Modbus TCP protocol. The deep inspection module is based on rule-based anomaly intrusion detection. Furthermore, we use the online test to evaluate the performance of our SD-IDS system. Our approach get a low rate of false positive and false negative.

Terai, A., Abe, S., Kojima, S., Takano, Y., Koshijima, I..  2017.  Cyber-Attack Detection for Industrial Control System Monitoring with Support Vector Machine Based on Communication Profile. 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :132–138.

Industrial control systems (ICS) used in industrial plants are vulnerable to cyber-attacks that can cause fatal damage to the plants. Intrusion detection systems (IDSs) monitor ICS network traffic and detect suspicious activities. However, many IDSs overlook sophisticated cyber-attacks because it is hard to make a complete database of cyber-attacks and distinguish operational anomalies when compared to an established baseline. In this paper, a discriminant model between normal and anomalous packets was constructed with a support vector machine (SVM) based on an ICS communication profile, which represents only packet intervals and length, and an IDS with the applied model is proposed. Furthermore, the proposed IDS was evaluated using penetration tests on our cyber security test bed. Although the IDS was constructed by the limited features (intervals and length) of packets, the IDS successfully detected cyber-attacks by monitoring the rate of predicted attacking packets.

Feng, C., Li, T., Chana, D..  2017.  Multi-level Anomaly Detection in Industrial Control Systems via Package Signatures and LSTM Networks. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :261–272.

We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques.

Düllmann, Thomas F., van Hoorn, André.  2017.  Model-driven Generation of Microservice Architectures for Benchmarking Performance and Resilience Engineering Approaches. Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion. :171–172.

Microservice architectures are steadily gaining adoption in industrial practice. At the same time, performance and resilience are important properties that need to be ensured. Even though approaches for performance and resilience have been developed (e.g., for anomaly detection and fault tolerance), there are no benchmarking environments for their evaluation under controlled conditions. In this paper, we propose a generative platform for benchmarking performance and resilience engineering approaches in microservice architectures, comprising an underlying metamodel, a generation platform, and supporting services for workload generation, problem injection, and monitoring.