Visible to the public Biblio

Filters: Keyword is Scalable Security  [Clear All Filters]
Naik Sapavath, Naveen, Muhati, Eric, Rawat, Danda B..  2021.  Prediction and Detection of Cyberattacks using AI Model in Virtualized Wireless Networks. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :97—102.
Securing communication between any two wireless devices or users is challenging without compromising sensitive/personal data. To address this problem, we have developed an artificial intelligence (AI) algorithm to secure communication on virtualized wireless networks. To detect cyberattacks in a virtualized environment is challenging compared to traditional wireless networks setting. However, we successfully investigate an efficient cyberattack detection algorithm using an AI algorithm in a Bayesian learning model for detecting cyberattacks on the fly. We have studied the results of Random Forest and deep neural network (DNN) models to detect the cyberattacks on a virtualized wireless network, having considered the required transmission power as a threshold value to classify suspicious activities in our model. We present both formal mathematical analysis and numerical results to support our claims. The numerical results show our accuracy in detecting cyberattacks in the proposed Bayesian model is better than Random Forest and DNN models. We have also compared both models in terms of detection errors. The performance comparison results show our proposed approach outperforms existing approaches in detection accuracy, precision, and recall.
Aghakhani, Hojjat, Meng, Dongyu, Wang, Yu-Xiang, Kruegel, Christopher, Vigna, Giovanni.  2021.  Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :159—178.
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to the human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label poisoning attack against transfer learning, which creates poison images with their center close to the target image in the feature space. Our attack, Bullseye Polytope, improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end transfer learning, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) when crafting the poison samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without using extra poison samples.
Hu, Yanbu, Shao, Cuiping, Li, Huiyun.  2021.  Energy-Efficient Deep Neural Networks Implementation on a Scalable Heterogeneous FPGA Cluster. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :10—15.
In recent years, with the rapid development of DNN, the algorithm complexity in a series of fields such as computer vision and natural language processing is increasing rapidly. FPGA-based DNN accelerators have demonstrated superior flexibility and performance, with higher energy efficiency compared to high-performance devices such as GPU. However, the computing resources of a single FPGA are limited and it is difficult to flexibly meet the requirements of high throughput and high energy efficiency of different computing scales. Therefore, this paper proposes a DNN implementation method based on the scalable heterogeneous FPGA cluster to adapt to different tasks and achieve high throughput and energy efficiency. Firstly, the method divides a single enormous task into multiple modules and running each module on different FPGA as the pipeline structure between multiple boards. Secondly, a task deployment method based on dichotomy is proposed to maximize the balance of task execution time of different pipeline stages to improve throughput and energy efficiency. Thirdly, optimize DNN computing module according to the relationship between computing power and bandwidth, and improve energy efficiency by reducing waste of ineffective resources and improving resource utilization. The experiment results on Alexnet and VGG-16 demonstrate that we use Zynq 7035 cluster can at most achieves ×25.23 energy efficiency of optimized AMD AIO processor. Compared with previous works of single FPGA and FPGA cluster, the energy efficiency is improved by 59.5% and 18.8%, respectively.
Ashik, Mahmudul Hassan, Islam, Tariqul, Hasan, Kamrul, Lim, Kiho.  2021.  A Blockchain-Based Secure Fog-Cloud Architecture for Internet of Things. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :1—3.

Fog Computing was envisioned to solve problems like high latency, mobility, bandwidth, etc. that were introduced by Cloud Computing. Fog Computing has enabled remotely connected IoT devices and sensors to be managed efficiently. Nonetheless, the Fog-Cloud paradigm suffers from various security and privacy related problems. Blockchain ensures security in a trustless way and therefore its applications in various fields are increasing rapidly. In this work, we propose a Fog-Cloud architecture that enables Blockchain to ensure security, scalability, and privacy of remotely connected IoT devices. Furthermore, our proposed architecture also efficiently manages common problems like ever-increasing latency and energy consumption that comes with the integration of Blockchain in Fog-Cloud architecture.

Cui, Jie, Kong, Lingbiao, Zhong, Hong, Sun, Xiuwen, Gu, Chengjie, Ma, Jianfeng.  2021.  Scalable QoS-Aware Multicast for SVC Streams in Software-Defined Networks. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—7.
Because network nodes are transparent in media streaming applications, traditional networks cannot utilize the scalability feature of Scalable video coding (SVC). Compared with the traditional network, SDN supports various flows in a more fine-grained and scalable manner via the OpenFlow protocol, making QoS requirements easier and more feasible. In previous studies, a Ternary Content-Addressable Memory (TCAM) space in the switch has not been considered. This paper proposes a scalable QoS-aware multicast scheme for SVC streams, and formulates the scalable QoS-aware multicast routing problem as a nonlinear programming model. Then, we design heuristic algorithms that reduce the TCAM space consumption and construct the multicast tree for SVC layers according to video streaming requests. To alleviate video quality degradation, a dynamic layered multicast routing algorithm is proposed. Our experimental results demonstrate the performance of this method in terms of the packet loss ratio, scalability, the average satisfaction, and system utility.
Natalino, Carlos, Manso, Carlos, Vilalta, Ricard, Monti, Paolo, Munõz, Raul, Furdek, Marija.  2021.  Scalable Physical Layer Security Components for Microservice-Based Optical SDN Controllers. 2021 European Conference on Optical Communication (ECOC). :1—4.
We propose and demonstrate a set of microservice-based security components able to perform physical layer security assessment and mitigation in optical networks. Results illustrate the scalability of the attack detection mechanism and the agility in mitigating attacks.
Örs, Faik Kerem, Aydın, Mustafa, Boğatarkan, Aysu, Levi, Albert.  2021.  Scalable Wi-Fi Intrusion Detection for IoT Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
The pervasive and resource-constrained nature of Internet of Things (IoT) devices makes them attractive to be targeted by different means of cyber threats. There are a vast amount of botnets being deployed every day that aim to increase their presence on the Internet for realizing malicious activities with the help of the compromised interconnected devices. Therefore, monitoring IoT networks using intrusion detection systems is one of the major countermeasures against such threats. In this work, we present a machine learning based Wi-Fi intrusion detection system developed specifically for IoT devices. We show that a single multi-class classifier, which operates on the encrypted data collected from the wireless data link layer, is able to detect the benign traffic and six types of IoT attacks with an overall accuracy of 96.85%. Our model is a scalable one since there is no need to train different classifiers for different IoT devices. We also present an alternative attack classifier that outperforms the attack classification model which has been developed in an existing study using the same dataset.
Prabavathy, S., Supriya, V..  2021.  SDN based Cognitive Security System for Large-Scale Internet of Things using Fog Computing. 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI). :129—134.
Internet of Things (IoT) is penetrating into every aspect of our personal lives including our body, our home and our living environment which poses numerous security challenges. The number of heterogeneous connected devices is increasing exponentially in IoT, which in turn increases the attack surface of IoT. This forces the need for uniform, distributed security mechanism which can efficiently detect the attack at faster rate in highly scalable IoT environment. The proposed work satisfies this requirement by providing a security framework which combines Fog computing and Software Defined Networking (SDN). The experimental results depicts the effectiveness in protecting the IoT applications at faster rate
Li, Yang, Bai, Liyun, Zhang, Mingqi, Wang, Siyuan, Wu, Jing, Jiang, Hao.  2021.  Network Protocol Reverse Parsing Based on Bit Stream. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83—90.
The network security problem brought by the cloud computing has become an important issue to be dealt with in information construction. Since anomaly detection and attack detection in cloud environment need to find the vulnerability through the reverse analysis of data flow, it is of great significance to carry out the reverse analysis of unknown network protocol in the security application of cloud environment. To solve this problem, an improved mining method on bitstream protocol association rules with unknown type and format is proposed. The method combines the location information of the protocol framework to make the frequent extraction process more concise and accurate. In addition, for the frame separation problem of unknown protocol, we design a hierarchical clustering algorithm based on Jaccard distance and a frame field delimitation method based on the proximity of information entropy between bytes. The experimental results show that this technology can correctly resolve the protocol format and realize the purpose of anomaly detection in cloud computing, and ensure the security of cloud services.
Rawal, Bharat S., Gollapudi, Sai Tarun.  2021.  No-Sum IPsec Lite: Simplified and lightweight Internet security protocol for IoT devices. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :4—9.
IPsec is widely used for internet security because it offers confidentiality, integrity, and authenticity also protects from replay attacks. IP Security depends on numerous frameworks, organization propels, and cryptographic techniques. IPsec is a heavyweight complex security protocol suite. Because of complex architecture and implementation processes, security implementers prefer TLS. Because of complex implementation, it is impractical to manage over the IoT devices. We propose a simplified and lite version of internet security protocol implemented with only ESP. For encryption, we use AES, RAS-RLP public key cryptography.
Zelenbaba, Stefan, Löschenbrand, David, Hofer, Markus, Dakić, Anja, Rainer, Benjamin, Humer, Gerhard, Zemen, Thomas.  2020.  A Scalable Mobile Multi-Node Channel Sounder. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.

The advantages of measuring multiple wireless links simultaneously has been gaining attention due to the growing complexity of wireless communication systems. Analyzing vehicular communication systems presents a particular challenge due to their rapid time-varying nature. Therefore multi-node channel sounding is crucial for such endeavors. In this paper, we present the architecture and practical implementation of a scalable mobile multi-node channel sounder, optimized for use in vehicular scenarios. We perform a measurement campaign with three moving nodes, which includes a line of sight (LoS) connection on two links and non LoS(NLoS) conditions on the third link. We present the results on the obtained channel delay and Doppler characteristics, followed by the assessment of the degree of correlation of the analyzed channels and time-variant channel rates, hence investigating the suitability of the channel's physical attributes for relaying. The results show low cross-correlation between the transfer functions of the direct and the relaying link, while a higher rate is calculated for the relaying link.

Pawar, Shrikant, Stanam, Aditya.  2020.  Scalable, Reliable and Robust Data Mining Infrastructures. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :123—125.

Mining of data is used to analyze facts to discover formerly unknown patterns, classifying and grouping the records. There are several crucial scalable statistics mining platforms that have been developed in latest years. RapidMiner is a famous open source software which can be used for advanced analytics, Weka and Orange are important tools of machine learning for classifying patterns with techniques of clustering and regression, whilst Knime is often used for facts preprocessing like information extraction, transformation and loading. This article encapsulates the most important and robust platforms.

Nienhuis, Kyndylan, Joannou, Alexandre, Bauereiss, Thomas, Fox, Anthony, Roe, Michael, Campbell, Brian, Naylor, Matthew, Norton, Robert M., Moore, Simon W., Neumann, Peter G. et al..  2020.  Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process. 2020 IEEE Symposium on Security and Privacy (SP). :1003—1020.

The root causes of many security vulnerabilities include a pernicious combination of two problems, often regarded as inescapable aspects of computing. First, the protection mechanisms provided by the mainstream processor architecture and C/C++ language abstractions, dating back to the 1970s and before, provide only coarse-grain virtual-memory-based protection. Second, mainstream system engineering relies almost exclusively on test-and-debug methods, with (at best) prose specifications. These methods have historically sufficed commercially for much of the computer industry, but they fail to prevent large numbers of exploitable bugs, and the security problems that this causes are becoming ever more acute.In this paper we show how more rigorous engineering methods can be applied to the development of a new security-enhanced processor architecture, with its accompanying hardware implementation and software stack. We use formal models of the complete instruction-set architecture (ISA) at the heart of the design and engineering process, both in lightweight ways that support and improve normal engineering practice - as documentation, in emulators used as a test oracle for hardware and for running software, and for test generation - and for formal verification. We formalise key intended security properties of the design, and establish that these hold with mechanised proof. This is for the same complete ISA models (complete enough to boot operating systems), without idealisation.We do this for CHERI, an architecture with hardware capabilities that supports fine-grained memory protection and scalable secure compartmentalisation, while offering a smooth adoption path for existing software. CHERI is a maturing research architecture, developed since 2010, with work now underway on an Arm industrial prototype to explore its possible adoption in mass-market commercial processors. The rigorous engineering work described here has been an integral part of its development to date, enabling more rapid and confident experimentation, and boosting confidence in the design.

Tabiban, Azadeh, Jarraya, Yosr, Zhang, Mengyuan, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2020.  Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Application to OpenStack. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

The dynamicity and complexity of clouds highlight the importance of automated root cause analysis solutions for explaining what might have caused a security incident. Most existing works focus on either locating malfunctioning clouds components, e.g., switches, or tracing changes at lower abstraction levels, e.g., system calls. On the other hand, a management-level solution can provide a big picture about the root cause in a more scalable manner. In this paper, we propose DOMINOCATCHER, a novel provenance-based solution for explaining the root cause of security incidents in terms of management operations in clouds. Specifically, we first define our provenance model to capture the interdependencies between cloud management operations, virtual resources and inputs. Based on this model, we design a framework to intercept cloud management operations and to extract and prune provenance metadata. We implement DOMINOCATCHER on OpenStack platform as an attached middleware and validate its effectiveness using security incidents based on real-world attacks. We also evaluate the performance through experiments on our testbed, and the results demonstrate that DOMINOCATCHER incurs insignificant overhead and is scalable for clouds.

Samriya, Jitendra Kumar, Kumar, Narander.  2020.  Fuzzy Ant Bee Colony For Security And Resource Optimization In Cloud Computing. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—5.

Cloud computing (CC) systems prevail to be the widespread computational paradigms for offering immense scalable and elastic services. Computing resources in cloud environment should be scheduled to facilitate the providers to utilize the resources moreover the users could get low cost applications. The most prominent need in job scheduling is to ensure Quality of service (QoS) to the user. In the boundary of the third party the scheduling takes place hence it is a significant condition for assuring its security. The main objective of our work is to offer QoS i.e. cost, makespan, minimized migration of task with security enforcement moreover the proposed algorithm guarantees that the admitted requests are executed without violating service level agreement (SLA). These objectives are attained by the proposed Fuzzy Ant Bee Colony algorithm. The experimental outcome confirms that secured job scheduling objective with assured QoS is attained by the proposed algorithm.

Ajayi, Oluwaseyi, Saadawi, Tarek.  2020.  Blockchain-Based Architecture for Secured Cyber-Attack Features Exchange. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :100—107.

Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics' exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.

Bazari, Aditya Shyam, Singh, Aditya, Khan, Abdul Ahad, Jindal, Rajni.  2020.  Filter Based Scalable Blockchain for Domestic Internet of Things. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1051—1056.

With the advancements in technology, the ease of interconnectedness among devices has increased manifold, leading to the widespread usage of Internet of Things. Internet of Things has also reached our homes, often referred to as domestic Internet of Things. However, the security aspect of domestic Internet of Things has largely been under question as the increase in inter-device communication renders the system more vulnerable to adversaries. Largely popular blockchain technology is being extensively researched for integration into the Internet of Things framework in order to improve the security aspect of the framework. Blockchain, being a cryptographically linked set of data, has a few barriers which prevent it from being successfully integrated to Internet of Things. One of the major barrier is the high computational requirements and time latency associated with it. This work tries to address this research gap and proposes a novel scalable blockchain optimization for domestic Internet of Things. The proposed blockchain model uses a flow based filtering technique as an added security layer to facilitate the scenario. This work then evaluates the performance of the proposed model in various scenarios and compares it with that of traditional blockchain. The work presents a largely encompassing evaluation, explanation and assessment of the proposed model.

Hasan, Tooba, Adnan, Akhunzada, Giannetsos, Thanassis, Malik, Jahanzaib.  2020.  Orchestrating SDN Control Plane towards Enhanced IoT Security. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :457—464.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively detect sophisticated malware resulting in undesirable (run-time) device and network modifications. This is not an easy task considering the dynamic and heterogeneous nature of IoT environments; i.e., different operating systems, varied connected networks and a wide gamut of underlying protocols and devices. Malicious IoT nodes or gateways can potentially lead to the compromise of the whole IoT network infrastructure. On the other hand, the SDN control plane has the capability to be orchestrated towards providing enhanced security services to all layers of the IoT networking stack. In this paper, we propose an SDN-enabled control plane based orchestration that leverages emerging Long Short-Term Memory (LSTM) classification models; a Deep Learning (DL) based architecture to combat malicious IoT nodes. It is a first step towards a new line of security mechanisms that enables the provision of scalable AI-based intrusion detection focusing on the operational assurance of only those specific, critical infrastructure components,thus, allowing for a much more efficient security solution. The proposed mechanism has been evaluated with current state of the art datasets (i.e., N\_BaIoT 2018) using standard performance evaluation metrics. Our preliminary results show an outstanding detection accuracy (i.e., 99.9%) which significantly outperforms state-of-the-art approaches. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security does not hinder the deployment of intelligent IoT-based computing systems.

Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

Zhang, Yunan, Xu, Aidong Xu, Jiang, Yixin.  2020.  Scalable and Accurate Binary Code Search Method Based on Simhash and Partial Trace. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :818—826.

Binary code search has received much attention recently due to its impactful applications, e.g., plagiarism detection, malware detection and software vulnerability auditing. However, developing an effective binary code search tool is challenging due to the gigantic syntax and structural differences in binaries resulted from different compilers, compiler options and malware family. In this paper, we propose a scalable and accurate binary search engine which performs syntactic matching by combining a set of key techniques to address the challenges above. The key contribution is binary code searching technique which combined function filtering and partial trace method to match the function code relatively quick and accurate. In addition, a simhash and basic information based function filtering is proposed to dramatically reduce the irrelevant target functions. Besides, we introduce a partial trace method for matching the shortlisted function accurately. The experimental results show that our method can find similar functions, even with the presence of program structure distortion, in a scalable manner.

Zhu, Zheng, Tian, Yingjie, Li, Fan, Yang, Hongshan, Ma, Zheng, Rong, Guoping.  2020.  Research on Edge Intelligence-based Security Analysis Method for Power Operation System. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :258—263.

At present, the on-site safety problems of substations and critical power equipment are mainly through inspection methods. Still, manual inspection is difficult, time-consuming, and uninterrupted inspection is not possible. The current safety management is mainly guaranteed by rules and regulations and standardized operating procedures. In the on-site environment, it is very dependent on manual execution and confirmation, and the requirements for safety supervision and operating personnel are relatively high. However, the reliability, the continuity of control and patrol cannot be fully guaranteed, and it is easy to cause security vulnerabilities and cause security accidents due to personnel slackness. In response to this shortcoming, this paper uses edge computing and image processing techniques to discover security risks in time and designs a deep convolution attention mechanism network to perform image processing. Then the network is cropped and compressed so that it can be processed at the edge, and the results are aggregated to the cloud for unified management. A comprehensive security assessment module is designed in the cloud to conduct an overall risk assessment of the results reported by all edges, and give an alarm prompt. The experimental results in the real environment show the effectiveness of this method.

Zhu, Jianping, HOU, RUI, Wang, XiaoFeng, Wang, Wenhao, Cao, Jiangfeng, Zhao, Boyan, Wang, Zhongpu, Zhang, Yuhui, Ying, Jiameng, Zhang, Lixin et al..  2020.  Enabling Rack-scale Confidential Computing using Heterogeneous Trusted Execution Environment. 2020 IEEE Symposium on Security and Privacy (SP). :1450—1465.

With its huge real-world demands, large-scale confidential computing still cannot be supported by today's Trusted Execution Environment (TEE), due to the lack of scalable and effective protection of high-throughput accelerators like GPUs, FPGAs, and TPUs etc. Although attempts have been made recently to extend the CPU-like enclave to GPUs, these solutions require change to the CPU or GPU chips, may introduce new security risks due to the side-channel leaks in CPU-GPU communication and are still under the resource constraint of today's CPU TEE.To address these problems, we present the first Heterogeneous TEE design that can truly support large-scale compute or data intensive (CDI) computing, without any chip-level change. Our approach, called HETEE, is a device for centralized management of all computing units (e.g., GPUs and other accelerators) of a server rack. It is uniquely designed to work with today's data centres and clouds, leveraging modern resource pooling technologies to dynamically compartmentalize computing tasks, and enforce strong isolation and reduce TCB through hardware support. More specifically, HETEE utilizes the PCIe ExpressFabric to allocate its accelerators to the server node on the same rack for a non-sensitive CDI task, and move them back into a secure enclave in response to the demand for confidential computing. Our design runs a thin TCB stack for security management on a security controller (SC), while leaving a large set of software (e.g., AI runtime, GPU driver, etc.) to the integrated microservers that operate enclaves. An enclaves is physically isolated from others through hardware and verified by the SC at its inception. Its microserver and computing units are restored to a secure state upon termination.We implemented HETEE on a real hardware system, and evaluated it with popular neural network inference and training tasks. Our evaluations show that HETEE can easily support the CDI tasks on the real-world scale and incurred a maximal throughput overhead of 2.17% for inference and 0.95% for training on ResNet152.

Zhu, Fangzhou, Liu, Liang, Meng, Weizhi, Lv, Ting, Hu, Simin, Ye, Renjun.  2020.  SCAFFISD: A Scalable Framework for Fine-Grained Identification and Security Detection of Wireless Routers. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1194–1199.

The security of wireless network devices has received widespread attention, but most existing schemes cannot achieve fine-grained device identification. In practice, the security vulnerabilities of a device are heavily depending on its model and firmware version. Motivated by this issue, we propose a universal, extensible and device-independent framework called SCAFFISD, which can provide fine-grained identification of wireless routers. It can generate access rules to extract effective information from the router admin page automatically and perform quick scans for known device vulnerabilities. Meanwhile, SCAFFISD can identify rogue access points (APs) in combination with existing detection methods, with the purpose of performing a comprehensive security assessment of wireless networks. We implement the prototype of SCAFFISD and verify its effectiveness through security scans of actual products.

Sandor, Hunor, Genge, Bela, Haller, Piroska, Bica, Andrei.  2019.  A Security-Enhanced Interoperability Middleware for the Internet of Things. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
This paper documents an Internet of Things (IoT) middleware specially tailored to address the security, and operational requirements expected from an effective IoT platform. In essence, the middleware exposes a diverse palette of features, including authentication, authorization, auditing, confidentiality and integrity of data. Besides these aspects, the middleware encapsulates an IoT object abstraction layer that builds a generic object model that is independent from the device type (i.e., hardware, software, vendor). Furthermore, it builds on standards and specifications to accomplish a highly resilient and scalable solution. The approach is tested on several hardware platforms. A use case scenario is presented to demonstrate its main features. The middleware represents a key component in the context of the “GHOST - Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control” project.
de Matos Patrocínio dos Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Do, Van Thuan, Jacot, Niels, van Do, Thanh.  2019.  Towards Achieving a Secure Authentication Mechanism for IoT Devices in 5G Networks. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :130–135.

Upon the new paradigm of Cellular Internet of Things, through the usage of technologies such as Narrowband IoT (NB-IoT), a massive amount of IoT devices will be able to use the mobile network infrastructure to perform their communications. However, it would be beneficial for these devices to use the same security mechanisms that are present in the cellular network architecture, so that their connections to the application layer could see an increase on security. As a way to approach this, an identity management and provisioning mechanism, as well as an identity federation between an IoT platform and the cellular network is proposed as a way to make an IoT device deemed worthy of using the cellular network and perform its actions.