Visible to the public Biblio

Filters: Keyword is Benchmark testing  [Clear All Filters]
2021-11-29
Hough, Katherine, Welearegai, Gebrehiwet, Hammer, Christian, Bell, Jonathan.  2020.  Revealing Injection Vulnerabilities by Leveraging Existing Tests. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :284–296.
Code injection attacks, like the one used in the high-profile 2017 Equifax breach, have become increasingly common, now ranking \#1 on OWASP's list of critical web application vulnerabilities. Static analyses for detecting these vulnerabilities can overwhelm developers with false positive reports. Meanwhile, most dynamic analyses rely on detecting vulnerabilities as they occur in the field, which can introduce a high performance overhead in production code. This paper describes a new approach for detecting injection vulnerabilities in applications by harnessing the combined power of human developers' test suites and automated dynamic analysis. Our new approach, Rivulet, monitors the execution of developer-written functional tests in order to detect information flows that may be vulnerable to attack. Then, Rivulet uses a white-box test generation technique to repurpose those functional tests to check if any vulnerable flow could be exploited. When applied to the version of Apache Struts exploited in the 2017 Equifax attack, Rivulet quickly identifies the vulnerability, leveraging only the tests that existed in Struts at that time. We compared Rivulet to the state-of-the-art static vulnerability detector Julia on benchmarks, finding that Rivulet outperformed Julia in both false positives and false negatives. We also used Rivulet to detect new vulnerabilities.
2021-09-30
Boespflug, Etienne, Ene, Cristian, Mounier, Laurent, Potet, Marie-Laure.  2020.  Countermeasures Optimization in Multiple Fault-Injection Context. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :26–34.
Fault attacks consist in changing the program behavior by injecting faults at run-time, either at hardware or at software level. Their goal is to change the correct progress of the algorithm and hence, either to allow gaining some privilege access or to allow retrieving some secret information based on an analysis of the deviation of the corrupted behavior with respect to the original one. Countermeasures have been proposed to protect embedded systems by adding spatial, temporal or information redundancy at hardware or software level. First we define Countermeasures Check Point (CCP) and CCPs-based countermeasures as an important subclass of countermeasures. Then we propose a methodology to generate an optimal protection scheme for CCPs-based countermeasure. Finally we evaluate our work on a benchmark of code examples with respect to several Control Flow Integrity (CFI) oriented existing protection schemes.
2021-08-02
Pereira, José D’Abruzzo.  2020.  Techniques and Tools for Advanced Software Vulnerability Detection. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :123—126.
Software is frequently deployed with vulnerabilities that may allow hackers to gain access to the system or information, leading to money or reputation losses. Although there are many techniques to detect software vulnerabilities, their effectiveness is far from acceptable, especially in large software projects, as shown by several research works. This Ph.D. aims to study the combination of different techniques to improve the effectiveness of vulnerability detection (increasing the detection rate and decreasing the number of false-positives). Static Code Analysis (SCA) has a good detection rate and is the central technique of this work. However, as SCA reports many false-positives, we will study the combination of various SCA tools and the integration with other detection approaches (e.g., software metrics) to improve vulnerability detection capabilities. We will also study the use of such combination to prioritize the reported vulnerabilities and thus guide the development efforts and fixes in resource-constrained projects.
2021-06-01
Abhinav, P Y, Bhat, Avakash, Joseph, Christina Terese, Chandrasekaran, K.  2020.  Concurrency Analysis of Go and Java. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
There has been tremendous progress in the past few decades towards developing applications that receive data and send data concurrently. In such a day and age, there is a requirement for a language that can perform optimally in such environments. Currently, the two most popular languages in that respect are Go and Java. In this paper, we look to analyze the concurrency features of Go and Java through a complete programming language performance analysis, looking at their compile time, run time, binary sizes and the language's unique concurrency features. This is done by experimenting with the two languages using the matrix multiplication and PageRank algorithms. To the extent of our knowledge, this is the first work which used PageRank algorithm to analyse concurrency. Considering the results of this paper, application developers and researchers can hypothesize on an appropriate language to use for their concurrent programming activity.Results of this paper show that Go performs better for fewer number of computation but is soon taken over by Java as the number of computations drastically increase. This trend is shown to be the opposite when thread creation and management is considered where Java performs better with fewer computation but Go does better later on. Regarding concurrency features both Java with its Executor Service library and Go had their own advantages that made them better for specific applications.
2021-05-18
Feng, Qi, Feng, Chendong, Hong, Weijiang.  2020.  Graph Neural Network-based Vulnerability Predication. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :800–801.
Automatic vulnerability detection is challenging. In this paper, we report our in-progress work of vulnerability prediction based on graph neural network (GNN). We propose a general GNN-based framework for predicting the vulnerabilities in program functions. We study the different instantiations of the framework in representative program graph representations, initial node encodings, and GNN learning methods. The preliminary experimental results on a representative benchmark indicate that the GNN-based method can improve the accuracy and recall rates of vulnerability prediction.
2021-05-03
Zou, Changwei, Xue, Jingling.  2020.  Burn After Reading: A Shadow Stack with Microsecond-level Runtime Rerandomization for Protecting Return Addresses**Thanks to all the reviewers for their valuable comments. This research is supported by an Australian Research Council grant (DP180104069).. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :258–270.
Return-oriented programming (ROP) is an effective code-reuse attack in which short code sequences (i.e., gadgets) ending in a ret instruction are found within existing binaries and then executed by taking control of the call stack. The shadow stack, control flow integrity (CFI) and code (re)randomization are three popular techniques for protecting programs against return address overwrites. However, existing runtime rerandomization techniques operate on concrete return addresses, requiring expensive pointer tracking. By adding one level of indirection, we introduce BarRA, the first shadow stack mechanism that applies continuous runtime rerandomization to abstract return addresses for protecting their corresponding concrete return addresses (protected also by CFI), thus avoiding expensive pointer tracking. As a nice side-effect, BarRA naturally combines the shadow stack, CFI and runtime rerandomization in the same framework. The key novelty of BarRA, however, is that once some abstract return addresses are leaked, BarRA will enforce the burn-after-reading property by rerandomizing the mapping from the abstract to the concrete return address space in the order of microseconds instead of seconds required for rerandomizing a concrete return address space. As a result, BarRA can be used as a superior replacement for the shadow stack, as demonstrated by comparing both using the 19 C/C++ benchmarks in SPEC CPU2006 (totalling 2,047,447 LOC) and analyzing a proof-of-concept attack, provided that we can tolerate some slight binary code size increases (by an average of 29.44%) and are willing to use 8MB of dedicated memory for holding up to 220 return addresses (on a 64-bit platform). Under an information leakage attack (for some return addresses), the shadow stack is always vulnerable but BarRA is significantly more resilient (by reducing an attacker's success rate to [1/(220)] on average). In terms of the average performance overhead introduced, both are comparable: 6.09% (BarRA) vs. 5.38% (the shadow stack).
2021-04-27
Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.

The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.

2021-03-29
Zimmo, S., Refaey, A., Shami, A..  2020.  Trusted Boot for Embedded Systems Using Hypothesis Testing Benchmark. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1—2.

Security has become a crucial consideration and is one of the most important design goals for an embedded system. This paper examines the type of boot sequence, and more specifically a trusted boot which utilizes the method of chain of trust. After defining these terms, this paper will examine the limitations of the existing safe boot, and finally propose the method of trusted boot based on hypothesis testing benchmark and the cost it takes to perform this method.

2021-03-22
Ban, T. Q., Nguyen, T. T. T., Long, V. T., Dung, P. D., Tung, B. T..  2020.  A Benchmarking of the Effectiveness of Modular Exponentiation Algorithms using the library GMP in C language. 2020 International Conference on Computational Intelligence (ICCI). :237–241.
This research aims to implement different modular exponentiation algorithms and evaluate the average complexity and compare it to the theoretical value. We use the library GMP to implement seven modular exponentiation algorithms. They are Left-to-right Square and Multiply, Right-to-left Square and Multiply, Left-to-right Signed Digit Square, and Multiply Left-to-right Square and Multiply Always Right-to-left Square and Multiply Always, Montgomery Ladder and Joye Ladder. For some exponent bit length, we choose 1024 bits and execute each algorithm on many exponent values and count the average numbers of squares and the average number of multiplications. Whenever relevant, our programs will check the consistency relations between the registers at the end of the exponentiation.
2021-03-15
Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R..  2020.  CrypTFlow: Secure TensorFlow Inference. 2020 IEEE Symposium on Security and Privacy (SP). :336–353.
We present CrypTFlow, a first of its kind system that converts TensorFlow inference code into Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build three components. Our first component, Athos, is an end-to-end compiler from TensorFlow to a variety of semihonest MPC protocols. The second component, Porthos, is an improved semi-honest 3-party protocol that provides significant speedups for TensorFlow like applications. Finally, to provide malicious secure MPC protocols, our third component, Aramis, is a novel technique that uses hardware with integrity guarantees to convert any semi-honest MPC protocol into an MPC protocol that provides malicious security. The malicious security of the protocols output by Aramis relies on integrity of the hardware and semi-honest security of MPC. Moreover, our system matches the inference accuracy of plaintext TensorFlow.We experimentally demonstrate the power of our system by showing the secure inference of real-world neural networks such as ResNet50 and DenseNet121 over the ImageNet dataset with running times of about 30 seconds for semi-honest security and under two minutes for malicious security. Prior work in the area of secure inference has been limited to semi-honest security of small networks over tiny datasets such as MNIST or CIFAR. Even on MNIST/CIFAR, CrypTFlow outperforms prior work.
Bresch, C., Lysecky, R., Hély, D..  2020.  BackFlow: Backward Edge Control Flow Enforcement for Low End ARM Microcontrollers. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :1606–1609.
This paper presents BackFlow, a compiler-based toolchain that enforces indirect backward edge control flow integrity for low-end ARM Cortex-M microprocessors. BackFlow is implemented within the Clang/LLVM compiler and supports the ARM instruction set and its subset Thumb. The control flow integrity generated by the compiler relies on a bitmap, where each set bit indicates a valid pointer destination. The efficiency of the framework is benchmarked using an STM32 NUCLEO F446RE microcontroller. The obtained results show that the control flow integrity solution incurs an execution time overhead ranging from 1.5 to 4.5%.
2021-03-09
Ho, W.-G., Ng, C.-S., Kyaw, N. A., Lwin, N. Kyaw Zwa, Chong, K.-S., Gwee, B.-H..  2020.  High Efficiency Early-Complete Brute Force Elimination Method for Security Analysis of Camouflage IC. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :161—164.

We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.

2021-01-18
Zhu, L., Chen, C., Su, Z., Chen, W., Li, T., Yu, Z..  2020.  BBS: Micro-Architecture Benchmarking Blockchain Systems through Machine Learning and Fuzzy Set. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). :411–423.
Due to the decentralization, irreversibility, and traceability, blockchain has attracted significant attention and has been deployed in many critical industries such as banking and logistics. However, the micro-architecture characteristics of blockchain programs still remain unclear. What's worse, the large number of micro-architecture events make understanding the characteristics extremely difficult. We even lack a systematic approach to identify the important events to focus on. In this paper, we propose a novel benchmarking methodology dubbed BBS to characterize blockchain programs at micro-architecture level. The key is to leverage fuzzy set theory to identify important micro-architecture events after the significance of them is quantified by a machine learning based approach. The important events for single programs are employed to characterize the programs while the common important events for multiple programs form an importance vector which is used to measure the similarity between benchmarks. We leverage BBS to characterize seven and six benchmarks from Blockbench and Caliper, respectively. The results show that BBS can reveal interesting findings. Moreover, by leveraging the importance characterization results, we improve that the transaction throughput of Smallbank from Fabric by 70% while reduce the transaction latency by 55%. In addition, we find that three of seven and two of six benchmarks from Blockbench and Caliper are redundant, respectively.
2021-01-15
Khalid, H., Woo, S. S..  2020.  OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2794—2803.
An image forgery method called Deepfakes can cause security and privacy issues by changing the identity of a person in a photo through the replacement of his/her face with a computer-generated image or another person's face. Therefore, a new challenge of detecting Deepfakes arises to protect individuals from potential misuses. Many researchers have proposed various binary-classification based detection approaches to detect deepfakes. However, binary-classification based methods generally require a large amount of both real and fake face images for training, and it is challenging to collect sufficient fake images data in advance. Besides, when new deepfakes generation methods are introduced, little deepfakes data will be available, and the detection performance may be mediocre. To overcome these data scarcity limitations, we formulate deepfakes detection as a one-class anomaly detection problem. We propose OC-FakeDect, which uses a one-class Variational Autoencoder (VAE) to train only on real face images and detects non-real images such as deepfakes by treating them as anomalies. Our preliminary result shows that our one class-based approach can be promising when detecting Deepfakes, achieving a 97.5% accuracy on the NeuralTextures data of the well-known FaceForensics++ benchmark dataset without using any fake images for the training process.
2020-10-30
Kang, Qiao, Lee, Sunwoo, Hou, Kaiyuan, Ross, Robert, Agrawal, Ankit, Choudhary, Alok, Liao, Wei-keng.  2020.  Improving MPI Collective I/O for High Volume Non-Contiguous Requests With Intra-Node Aggregation. IEEE Transactions on Parallel and Distributed Systems. 31:2682—2695.

Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication contention when redistributing the I/O requests. We evaluate the performance and compare it with the original two-phase I/O on Cray XC40 parallel computers (Theta and Cori) with Intel KNL and Haswell processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show our proposed method effectively reduces the communication cost and hence maintains the scalability for a large number of processes.

2020-09-28
Becher, Kilian, Beck, Martin, Strufe, Thorsten.  2019.  An Enhanced Approach to Cloud-based Privacy-preserving Benchmarking. 2019 International Conference on Networked Systems (NetSys). :1–8.
Benchmarking is an important measure for companies to investigate their performance and to increase efficiency. As companies usually are reluctant to provide their key performance indicators (KPIs) for public benchmarks, privacy-preserving benchmarking systems are required. In this paper, we present an enhanced privacy-preserving benchmarking protocol, which we implemented and evaluated based on the real-world scenario of product cost optimisation. It is based on homomorphic encryption and enables cloud-based KPI comparison, providing a variety of statistical measures. The theoretical and empirical evaluation of our benchmarking system underlines its practicability.
Shen, Jingyi, Baysal, Olga, Shafiq, M. Omair.  2019.  Evaluating the Performance of Machine Learning Sentiment Analysis Algorithms in Software Engineering. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1023–1030.
In recent years, sentiment analysis has been aware within software engineering domain. While automated sentiment analysis has long been suffering from doubt of accuracy, the tool performance is unstable when being applied on datasets other than the original dataset for evaluation. Researchers also have the disagreements upon if machine learning algorithms perform better than conventional lexicon and rule based approaches. In this paper, we looked into the factors in datasets that may affect the evaluation performance, also evaluated the popular machine learning algorithms in sentiment analysis, then proposed a novel structure for automated sentiment tool combines advantages from both approaches.
2020-08-28
Jafariakinabad, Fereshteh, Hua, Kien A..  2019.  Style-Aware Neural Model with Application in Authorship Attribution. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :325—328.

Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.

2020-08-24
Harris, Daniel R., Delcher, Chris.  2019.  bench4gis: Benchmarking Privacy-aware Geocoding with Open Big Data. 2019 IEEE International Conference on Big Data (Big Data). :4067–4070.
Geocoding, the process of translating addresses to geographic coordinates, is a relatively straight-forward and well-studied process, but limitations due to privacy concerns may restrict usage of geographic data. The impact of these limitations are further compounded by the scale of the data, and in turn, also limits viable geocoding strategies. For example, healthcare data is protected by patient privacy laws in addition to possible institutional regulations that restrict external transmission and sharing of data. This results in the implementation of “in-house” geocoding solutions where data is processed behind an organization's firewall; quality assurance for these implementations is problematic because sensitive data cannot be used to externally validate results. In this paper, we present our software framework called bench4gis which benchmarks privacy-aware geocoding solutions by leveraging open big data as surrogate data for quality assurance; the scale of open big data sets for address data can ensure that results are geographically meaningful for the locale of the implementing institution.
2020-08-14
Gu, Zuxing, Wu, Jiecheng, Liu, Jiaxiang, Zhou, Min, Gu, Ming.  2019.  An Empirical Study on API-Misuse Bugs in Open-Source C Programs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:11—20.
Today, large and complex software is developed with integrated components using application programming interfaces (APIs). Correct usage of APIs in practice presents a challenge due to implicit constraints, such as call conditions or call orders. API misuse, i.e., violation of these constraints, is a well-known source of bugs, some of which can cause serious security vulnerabilities. Although researchers have developed many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. In this paper, we provide a comprehensive empirical study on API-misuse bugs in open-source C programs. To understand the nature of API misuses in practice, we analyze 830 API-misuse bugs from six popular programs across different domains. For all the studied bugs, we summarize their root causes, fix patterns and usage statistics. Furthermore, to understand the capabilities and limitations of state-of-the-art static analysis detectors for API-misuse detection, we develop APIMU4C, a dataset of API-misuse bugs in C code based on our empirical study results, and evaluate three widely-used detectors on it qualitatively and quantitatively. We share all the findings and present possible directions towards more powerful API-misuse detectors.
2020-07-30
Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

2020-06-29
Liang, Xiaoyu, Znati, Taieb.  2019.  An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
2020-05-22
Markchit, Sarawut, Chiu, Chih-Yi.  2019.  Hash Code Indexing in Cross-Modal Retrieval. 2019 International Conference on Content-Based Multimedia Indexing (CBMI). :1—4.

Cross-modal hashing, which searches nearest neighbors across different modalities in the Hamming space, has become a popular technique to overcome the storage and computation barrier in multimedia retrieval recently. Although dozens of cross-modal hashing algorithms are proposed to yield compact binary code representation, applying exhaustive search in a large-scale dataset is impractical for the real-time purpose, and the Hamming distance computation suffers inaccurate results. In this paper, we propose a novel index scheme over binary hash codes in cross-modal retrieval. The proposed indexing scheme exploits a few binary bits of the hash code as the index code. Based on the index code representation, we construct an inverted index structure to accelerate the retrieval efficiency and train a neural network to improve the indexing accuracy. Experiments are performed on two benchmark datasets for retrieval across image and text modalities, where hash codes are generated by three cross-modal hashing methods. Results show the proposed method effectively boosts the performance over the benchmark datasets and hash methods.

2020-05-15
Wang, Jian, Guo, Shize, Chen, Zhe, Zhang, Tao.  2019.  A Benchmark Suite of Hardware Trojans for On-Chip Networks. IEEE Access. 7:102002—102009.
As recently studied, network-on-chip (NoC) suffers growing threats from hardware trojans (HTs), leading to performance degradation or information leakage when it provides communication service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid development in recent years. However, to the best of our knowledge, there are few standard benchmarks developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner. Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive experiments, including functional testing and side channel analysis are performed to assess the stealthiness of our HTs.
2020-05-11
Poovendran, R, Billclinton., S, Darshan., R, Dinakar., R, Fazil., M.  2019.  Design and analysis of a mesh-based Adaptive Wireless Network-on Chips Architecture With Irregular Network Routing. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.
The metallic interface for between core messages expends wealth influence and lesser throughput which are huge in Network-on Chip (NoC) structures. We proposed a remote Network-on-Chip (NoC) building Wireless Network-on Chip that uses power and imperatives gainful remote handsets to improve higherenergy and throughput by altering channels as indicated by traffic plans. Our proposed computations uses interface use bits of knowledge to redispensreal platforms, and a vitality funds of 29-35%. Wireless channels and a token sharing arrangement to totally use the remote information transmission successfully. Remote/electrical topological with results demonstrates a through-put advancement of 69%, a speedup between 1.7-2.9X on real platform, and an power savings of 25-38%.