Visible to the public Biblio

Filters: Keyword is FSs  [Clear All Filters]
2019-01-31
Boyle, Elette, Couteau, Geoffroy, Gilboa, Niv, Ishai, Yuval.  2018.  Compressing Vector OLE. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :896–912.

Oblivious linear-function evaluation (OLE) is a secure two-party protocol allowing a receiver to learn any linear combination of a pair of field elements held by a sender. OLE serves as a common building block for secure computation of arithmetic circuits, analogously to the role of oblivious transfer (OT) for boolean circuits. A useful extension of OLE is vector OLE (VOLE), allowing the receiver to learn any linear combination of two vectors held by the sender. In several applications of OLE, one can replace a large number of instances of OLE by a smaller number of instances of VOLE. This motivates the goal of amortizing the cost of generating long instances of VOLE. We suggest a new approach for fast generation of pseudo-random instances of VOLE via a deterministic local expansion of a pair of short correlated seeds and no interaction. This provides the first example of compressing a non-trivial and cryptographically useful correlation with good concrete efficiency. Our VOLE generators can be used to enhance the efficiency of a host of cryptographic applications. These include secure arithmetic computation and non-interactive zero-knowledge proofs with reusable preprocessing. Our VOLE generators are based on a novel combination of function secret sharing (FSS) for multi-point functions and linear codes in which decoding is intractable. Their security can be based on variants of the learning parity with noise (LPN) assumption over large fields that resist known attacks. We provide several constructions that offer tradeoffs between different efficiency measures and the underlying intractability assumptions.

2018-05-02
Menezes, B. A. M., Wrede, F., Kuchen, H., Neto, F. B. de Lima.  2017.  Parameter selection for swarm intelligence algorithms \#x2014; Case study on parallel implementation of FSS. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

Swarm Intelligence (SI) algorithms, such as Fish School Search (FSS), are well known as useful tools that can be used to achieve a good solution in a reasonable amount of time for complex optimization problems. And when problems increase in size and complexity, some increase in population size or number of iterations might be needed in order to achieve a good solution. In extreme cases, the execution time can be huge and other approaches, such as parallel implementations, might help to reduce it. This paper investigates the relation and trade off involving these three aspects in SI algorithms, namely population size, number of iterations, and problem complexity. The results with a parallel implementations of FSS show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior of the results, i.e. increasing the population over a certain threshold only leads to slight improvements.

2015-04-30
Chia-Feng Juang, Chi-Wei Hung, Chia-Hung Hsu.  2014.  Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design. Fuzzy Systems, IEEE Transactions on. 22:723-735.

This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.