Visible to the public Biblio

Filters: Keyword is Firewalls (computing)  [Clear All Filters]
2020-07-03
El-Din Abd El-Raouf, Karim Alaa, Bahaa-Eldin, Ayman M., Sobh, Mohamed A..  2019.  Multipath Traffic Engineering for Software Defined Networking. 2019 14th International Conference on Computer Engineering and Systems (ICCES). :132—136.
ASA systems (firewall, IDS, IPS) are probable to become communication bottlenecks in networks with growing network bandwidths. To alleviate this issue, we suggest to use Application-aware mechanism based on Deep Packet Inspection (DPI) to bypass chosen traffic around firewalls. The services of Internet video sharing gained importance and expanded their share of the multimedia market. The Internet video should meet strict service quality (QoS) criteria to make the broadcasting of broadcast television a viable and comparable level of quality. However, since the Internet video relies on packet communication, it is subject to delays, transmission failures, loss of data and bandwidth restrictions that may have a catastrophic effect on the quality of multimedia.
2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
2020-05-15
Kornaros, Georgios, Tomoutzoglou, Othon, Coppola, Marcello.  2018.  Hardware-Assisted Security in Electronic Control Units: Secure Automotive Communications by Utilizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro. 38:63—74.
With emerging smart automotive technologies, vehicle-to-vehicle communications, and software-dominated enhancements for enjoyable driving and advanced driver assistance systems, the complexity of providing guarantees in terms of security, trust, and privacy in a modern cyber-enabled automotive system is significantly elevated. New threat models emerge that require efficient system-level countermeasures. This article introduces synergies between on- and off-chip networking techniques to ensure secure execution environments for electronic control units. The proposed mechanisms consist of hardware firewalling and on-chip network physical isolation, whose mechanisms are combined with system-wide cryptographic techniques in automotive controller area network (CAN)-bus communications to provide authentication and confidentiality.
2020-04-17
You, Ruibang, Yuan, Zimu, Tu, Bibo, Cheng, Jie.  2019.  HP-SDDAN: High-Performance Software-Defined Data Access Network. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :849—856.

Recently, data protection has become increasingly important in cloud environments. The cloud platform has global user information, rich storage resource allocation information, and a fuller understanding of data attributes. At the same time, there is an urgent need for data access control to provide data security, and software-defined network, as a ready-made facility, has a global network view, global network management capabilities, and programable network rules. In this paper, we present an approach, named High-Performance Software-Defined Data Access Network (HP-SDDAN), providing software-defined data access network architecture, global data attribute management and attribute-based data access network. HP-SDDAN combines the excellent features of cloud platform and software-defined network, and fully considers the performance to implement software-defined data access network. In evaluation, we verify the effectiveness and efficiency of HP-SDDAN implementation, with only 1.46% overhead to achieve attribute-based data access control of attribute-based differential privacy.

2020-03-18
Zkik, Karim, Sebbar, Anass, Baadi, Youssef, Belhadi, Amine, Boulmalf, Mohammed.  2019.  An efficient modular security plane AM-SecP for hybrid distributed SDN. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :354–359.

Software defined networks (SDNs) represent new centralized network architecture that facilitates the deployment of services, applications and policies from the upper layers, relatively the management and control planes to the lower layers the data plane and the end user layer. SDNs give several advantages in terms of agility and flexibility, especially for mobile operators and for internet service providers. However, the implementation of these types of networks faces several technical challenges and security issues. In this paper we will focus on SDN's security issues and we will propose the implementation of a centralized security layer named AM-SecP. The proposed layer is linked vertically to all SDN layers which ease packets inspections and detecting intrusions. The purpose of this architecture is to stop and to detect malware infections, we do this by denying services and tunneling attacks without encumbering the networks by expensive operations and high calculation cost. The implementation of the proposed framework will be also made to demonstrate his feasibility and robustness.

2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.
2020-03-02
Zhao, Zhijun, Jiang, Zhengwei, Wang, Yueqiang, Chen, Guoen, Li, Bo.  2019.  Experimental Verification of Security Measures in Industrial Environments. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :498–502.
Industrial Control Security (ICS) plays an important role in protecting Industrial assets and processed from being tampered by attackers. Recent years witness the fast development of ICS technology. However there are still shortage of techniques and measures to verify the effectiveness of ICS approaches. In this paper, we propose a verification framework named vICS, for security measures in industrial environments. vICS does not requires installing any agent in industrial environments, and could be viewed as a non-intrusive way. We use vICS to evaluate the effectiveness of classic ICS techniques and measures through several experiments. The results shown that vICS provide an feasible solution for verifying the effectiveness of classic ICS techniques and measures for industrial environments.
2020-02-17
Yee, George O. M..  2019.  Designing Good Security Metrics. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:580–585.

This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.

2020-01-21
Abdelghani, TSCHROUB.  2019.  Industrial Control Systems (Ics) Security in Power Transmission Network. 2019 Algerian Large Electrical Network Conference (CAGRE). :1–4.

The goal of this document is to provide knowledge of Security for Industrial Control Systems (ICS,) such as supervisory control and data acquisition (SCADA) which is implemented in power transmission network, power stations, power distribution grids and other big infrastructures that affect large number of persons and security of nations. A distinction between IT and ICS security is given to make a difference between the two disciplines. In order to avoid intrusion and destruction of industrials plants, some recommendations are given to preserve their security.

2019-10-22
Khelf, Roumaissa, Ghoualmi-Zine, Nacira.  2018.  IPsec/Firewall Security Policy Analysis: A Survey. 2018 International Conference on Signal, Image, Vision and their Applications (SIVA). :1–7.
As the technology reliance increases, computer networks are getting bigger and larger and so are threats and attacks. Therefore Network security becomes a major concern during this last decade. Network Security requires a combination of hardware devices and software applications. Namely, Firewalls and IPsec gateways are two technologies that provide network security protection and repose on security policies which are maintained to ensure traffic control and network safety. Nevertheless, security policy misconfigurations and inconsistency between the policy's rules produce errors and conflicts, which are often very hard to detect and consequently cause security holes and compromise the entire system functionality. In This paper, we review the related approaches which have been proposed for security policy management along with surveying the literature for conflicts detection and resolution techniques. This work highlights the advantages and limitations of the proposed solutions for security policy verification in IPsec and Firewalls and gives an overall comparison and classification of the existing approaches.
2019-08-05
Vanickis, R., Jacob, P., Dehghanzadeh, S., Lee, B..  2018.  Access Control Policy Enforcement for Zero-Trust-Networking. 2018 29th Irish Signals and Systems Conference (ISSC). :1-6.

The evolution of the enterprise computing landscape towards emerging trends such as fog/edge computing and the Industrial Internet of Things (IIoT) are leading to a change of approach to securing computer networks to deal with challenges such as mobility, virtualized infrastructures, dynamic and heterogeneous user contexts and transaction-based interactions. The uncertainty introduced by such dynamicity introduces greater uncertainty into the access control process and motivates the need for risk-based access control decision making. Thus, the traditional perimeter-based security paradigm is increasingly being abandoned in favour of a so called "zero trust networking" (ZTN). In ZTN networks are partitioned into zones with different levels of trust required to access the zone resources depending on the assets protected by the zone. All accesses to sensitive information is subject to rigorous access control based on user and device profile and context. In this paper we outline a policy enforcement framework to address many of open challenges for risk-based access control for ZTN. We specify the design of required policy languages including a generic firewall policy language to express firewall rules. We design a mechanism to map these rules to specific firewall syntax and to install the rules on the firewall. We show the viability of our design with a small proof-of-concept.

2019-06-10
Alsumayt, A., Haggerty, J., Lotfi, A..  2018.  Evaluation of Detection Method to Mitigate DoS Attacks in MANETs. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–5.

A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.

Hussain, K., Hussain, S. J., Jhanjhi, N., Humayun, M..  2019.  SYN Flood Attack Detection based on Bayes Estimator (SFADBE) For MANET. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.

SYN flood attack is a very serious cause for disturbing the normal traffic in MANET. SYN flood attack takes advantage of the congestion caused by populating a specific route with unwanted traffic that results in the denial of services. In this paper, we proposed an Adaptive Detection Mechanism using Artificial Intelligence technique named as SYN Flood Attack Detection Based on Bayes Estimator (SFADBE) for Mobile ad hoc Network (MANET). In SFADBE, every node will gather the current information of the available channel and the secure and congested free (Best Path) channel for the traffic is selected. Due to constant congestion, the availability of the data path can be the cause of SYN Flood attack. By using this AI technique, we experienced the SYN Flood detection probability more than the others did. Simulation results show that our proposed SFADBE algorithm is low cost and robust as compared to the other existing approaches.

2019-05-01
Naik, N., Jenkins, P., Kerby, B., Sloane, J., Yang, L..  2018.  Fuzzy Logic Aided Intelligent Threat Detection in Cisco Adaptive Security Appliance 5500 Series Firewalls. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Cisco Adaptive Security Appliance (ASA) 5500 Series Firewall is amongst the most popular and technically advanced for securing organisational networks and systems. One of its most valuable features is its threat detection function which is available on every version of the firewall running a software version of 8.0(2) or higher. Threat detection operates at layers 3 and 4 to determine a baseline for network traffic, analysing packet drop statistics and generating threat reports based on traffic patterns. Despite producing a large volume of statistical information relating to several security events, further effort is required to mine and visually report more significant information and conclude the security status of the network. There are several commercial off-the-shelf tools available to undertake this task, however, they are expensive and may require a cloud subscription. Furthermore, if the information transmitted over the network is sensitive or requires confidentiality, the involvement of a third party or a third-party tool may place organisational security at risk. Therefore, this paper presents a fuzzy logic aided intelligent threat detection solution, which is a cost-free, intuitive and comprehensible solution, enhancing and simplifying the threat detection process for all. In particular, it employs a fuzzy reasoning system based on the threat detection statistics, and presents results/threats through a developed dashboard user interface, for ease of understanding for administrators and users. The paper further demonstrates the successful utilisation of a fuzzy reasoning system for selected and prioritised security events in basic threat detection, although it can be extended to encompass more complex situations, such as complete basic threat detection, advanced threat detection, scanning threat detection, and customised feature based threat detection.

2019-02-08
Yi, F., Cai, H. Y., Xin, F. Z..  2018.  A Logic-Based Attack Graph for Analyzing Network Security Risk Against Potential Attack. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1-4.
In this paper, we present LAPA, a framework for automatically analyzing network security risk and generating attack graph for potential attack. The key novelty in our work is that we represent the properties of networks and zero day vulnerabilities, and use logical reasoning algorithm to generate potential attack path to determine if the attacker can exploit these vulnerabilities. In order to demonstrate the efficacy, we have implemented the LAPA framework and compared with three previous network vulnerability analysis methods. Our analysis results have a low rate of false negatives and less cost of processing time due to the worst case assumption and logical property specification and reasoning. We have also conducted a detailed study of the efficiency for generation attack graph with different value of attack path number, attack path depth and network size, which affect the processing time mostly. We estimate that LAPA can produce high quality results for a large portion of networks.
2019-01-21
Nicho, M., Oluwasegun, A., Kamoun, F..  2018.  Identifying Vulnerabilities in APT Attacks: A Simulated Approach. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–4.

This research aims to identify some vulnerabilities of advanced persistent threat (APT) attacks using multiple simulated attacks in a virtualized environment. Our experimental study shows that while updating the antivirus software and the operating system with the latest patches may help in mitigating APTs, APT threat vectors could still infiltrate the strongest defenses. Accordingly, we highlight some critical areas of security concern that need to be addressed.

2018-06-11
Sepulveda, J., Fernandes, R., Marcon, C., Florez, D., Sigl, G..  2017.  A security-aware routing implementation for dynamic data protection in zone-based MPSoC. 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI). :59–64.
This work proposes a secure Network-on-Chip (NoC) approach, which enforces the encapsulation of sensitive traffic inside the asymmetrical security zones while using minimal and non-minimal paths. The NoC routing guarantees that the sensitive traffic communicates only through trusted nodes, which belong to a security zone. As the shape of the zones may change during operation, the sensitive traffic must be routed through low-risk paths. The experimental results show that this proposal can be an efficient and scalable alternative for enforcing the data protection inside a Multi-Processor System-on-Chip (MPSoC).
2018-06-07
Appelt, D., Panichella, A., Briand, L..  2017.  Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :339–350.

Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).

2018-03-26
d Krit, S., Haimoud, E..  2017.  Overview of Firewalls: Types and Policies: Managing Windows Embedded Firewall Programmatically. 2017 International Conference on Engineering MIS (ICEMIS). :1–7.

Due to the increasing threat of network attacks, Firewall has become crucial elements in network security, and have been widely deployed in most businesses and institutions for securing private networks. The function of a firewall is to examine each packet that passes through it and decide whether to letting them pass or halting them based on preconfigured rules and policies, so firewall now is the first defense line against cyber attacks. However most of people doesn't know how firewall works, and the most users of windows operating system doesn't know how to use the windows embedded firewall. This paper explains how firewall works, firewalls types, and all you need to know about firewall policies, then presents a novel application (QudsWall) developed by authors that manages windows embedded firewall and make it easy to use.

2018-02-21
Diovu, R. C., Agee, J. T..  2017.  Quantitative analysis of firewall security under DDoS attacks in smart grid AMI networks. 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON). :696–701.

One of the key objectives of distributed denial of service (DDoS) attack on the smart grid advanced metering infrastructure is to threaten the availability of end user's metering data. This will surely disrupt the smooth operations of the grid and third party operators who need this data for billing and other grid control purposes. In previous work, we proposed a cloud-based Openflow firewall for mitigation against DDoS attack in a smart grid AMI. In this paper, PRISM model checker is used to perform a probabilistic best-and worst-case analysis of the firewall with regard to DDoS attack success under different firewall detection probabilities ranging from zero to 1. The results from this quantitative analysis can be useful in determining the extent the DDoS attack can undermine the correctness and performance of the firewall. In addition, the study can also be helpful in knowing the extent the firewall can be improved by applying the knowledge derived from the worst-case performance of the firewall.

2018-01-16
Diovu, R. C., Agee, J. T..  2017.  A cloud-based openflow firewall for mitigation against DDoS attacks in smart grid AMI networks. 2017 IEEE PES PowerAfrica. :28–33.

Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.

Rengaraju, P., Ramanan, V. R., Lung, C. H..  2017.  Detection and prevention of DoS attacks in Software-Defined Cloud networks. 2017 IEEE Conference on Dependable and Secure Computing. :217–223.

One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.

2017-11-20
Bouhoula, A., Yazidi, A..  2016.  A security Policy Query Engine for fully automated resolution of anomalies in firewall configurations. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :76–80.

Legacy work on correcting firewall anomalies operate with the premise of creating totally disjunctive rules. Unfortunately, such solutions are impractical from implementation point of view as they lead to an explosion of the number of firewall rules. In a related previous work, we proposed a new approach for performing assisted corrective actions, which in contrast to the-state-of-the-art family of radically disjunctive approaches, does not lead to a prohibitive increase of the configuration size. In this sense, we allow relaxation in the correction process by clearly distinguishing between constructive anomalies that can be tolerated and destructive anomalies that should be systematically fixed. However, a main disadvantage of the latter approach was its dependency on the guided input from the administrator which controversially introduces a new risk for human errors. In order to circumvent the latter disadvantage, we present in this paper a Firewall Policy Query Engine (FPQE) that renders the whole process of anomaly resolution a fully automated one and which does not require any human intervention. In this sense, instead of prompting the administrator for inserting the proper order corrective actions, FPQE executes those queries against a high level firewall policy. We have implemented the FPQE and the first results of integrating it with our legacy anomaly resolver are promising.