Biblio
A cyber-physical system (CPS) is expected to be resilient to more than one type of adversary. In this paper, we consider a CPS that has to satisfy a linear temporal logic (LTL) objective in the presence of two kinds of adversaries. The first adversary has the ability to tamper with inputs to the CPS to influence satisfaction of the LTL objective. The interaction of the CPS with this adversary is modeled as a stochastic game. We synthesize a controller for the CPS to maximize the probability of satisfying the LTL objective under any policy of this adversary. The second adversary is an eavesdropper who can observe labeled trajectories of the CPS generated from the previous step. It could then use this information to launch other kinds of attacks. A labeled trajectory is a sequence of labels, where a label is associated to a state and is linked to the satisfaction of the LTL objective at that state. We use differential privacy to quantify the indistinguishability between states that are related to each other when the eavesdropper sees a labeled trajectory. Two trajectories of equal length will be differentially private if they are differentially private at each state along the respective trajectories. We use a skewed Kantorovich metric to compute distances between probability distributions over states resulting from actions chosen according to policies from related states in order to quantify differential privacy. Moreover, we do this in a manner that does not affect the satisfaction probability of the LTL objective. We validate our approach on a simulation of a UAV that has to satisfy an LTL objective in an adversarial environment.
The incidence of abnormal road traffic events, especially abnormal traffic congestion, is becoming more and more prominent in daily traffic management in China. It has become the main research work of urban traffic management to detect and identify traffic congestion incidents in time. Efficient and accurate detection of traffic congestion incidents can provide a good strategy for traffic management. At present, the detection and recognition of traffic congestion events mainly rely on the integration of road traffic flow data and the passing data collected by electronic police or devices of checkpoint, and then estimating and forecasting road conditions through the method of big data analysis; Such methods often have some disadvantages such as low time-effect, low precision and small prediction range. Therefore, with the help of the current large and medium cities in the public security, traffic police have built video surveillance equipment, through computer vision technology to analyze the traffic flow from video monitoring, in this paper, the motion state and the changing trend of vehicle flow are obtained by using the technology of vehicle detection from video and multi-target tracking based on deep learning, so as to realize the perception and recognition of traffic congestion. The method achieves the recognition accuracy of less than 60 seconds in real-time, more than 80% in detection rate of congestion event and more than 82.5% in accuracy of detection. At the same time, it breaks through the restriction of traditional big data prediction, such as traffic flow data, truck pass data and GPS floating car data, and enlarges the scene and scope of detection.
Since trajectory data is widely collected and utilized for scientific research and business purpose, publishing trajectory without proper privacy-policy leads to an acute threat to individual data. Recently, several methods, i.e., k-anonymity, l-diversity, t-closeness have been studied, though they tend to protect by reducing data depends on a feature of each method. When a strong privacy protection is required, these methods have excessively reduced data utility that may affect the result of scientific research. In this research, we suggest a novel approach to tackle this existing dilemma via an adding noise trajectory on a vector-based grid environment.
Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.