Visible to the public Biblio

Filters: Keyword is nanomagnetics  [Clear All Filters]
Li, X., Deng, M., Wang, X., Li, H., Yu, M..  2019.  Synthesis and magnetic properties of Fe-doped CdS nanorods. Micro Nano Letters. 14:275–279.
Hexagonal CdS and Fe-doped CdS nanorods were synthesised by a facile hydrothermal method and characterised by X-ray diffraction, energy dispersive X-ray spectroscopy, UV-vis absorption, photoluminescence, and X-ray photoelectron spectroscopy. The magnetic properties of undoped and Fe-doped CdS nanorods were investigated at room temperature. The experimental results demonstrate that the ferromagnetism of the Fe-doped CdS nanorods differs from that of the undoped CdS nanorods. The remanence magnetisation (Mr) and the coercive field (Hc) of the Fe-doped CdS nanorods were 4.9 × 10-3 emu/g and 270.6 Oe, respectively, while photoluminescence properties were not influenced by doping. First-principle calculations show that the ferromagnetism in Fe-doped CdS nanocrystal arose not only from the Fe dopants but also from the Cd vacancies, although the main contribution was due to the Fe dopants.
Anyfantis, D. I., Sarigiannidou, E., Rapenne, L., Stamatelatos, A., Ntemogiannis, D., Kapaklis, V., Poulopoulos, P..  2019.  Unexpected Development of Perpendicular Magnetic Anisotropy in Ni/NiO Multilayers After Mild Thermal Annealing. IEEE Magnetics Letters. 10:1–5.
We report on the significant enhancement of perpendicular magnetic anisotropy of Ni/NiO multilayers after mild annealing up to 90 min at 250 °C. Transmission electron microscopy shows that after annealing, a partial crystallization of the initially amorphous NiO layers occurs. This turns out to be the source of the anisotropy enhancement. Magnetic measurements reveal that even multilayers with Ni layers as thick as 7 nm, which in the as-deposited state showed inplane anisotropy with square hysteresis loops, show reduced in-plane remanence after thermal treatment. Hysteresis loops recorded with the field in the normal-to-film-plane direction provide evidence for perpendicular magnetic anisotropy with up and down magnetic domains at remanence. A plot of effective uniaxial magnetic anisotropy constant times individual Ni layer thickness as a function of individual Ni layer thickness shows a large change in the slope of the data attributed to a drastic change of volume anisotropy. Surface anisotropy showed a small decrease because of some layer roughening introduced by annealing.
Guerra, Y., Peña-Garcia, R., Padrón-Hernández, E..  2019.  Remanence State and Coercivity in 1-D Chain of Polycrystalline Hollow Cobalt Nanospheres. IEEE Transactions on Magnetics. 55:1–5.
In this paper, we present a study about the remanence state and coercivity in 1-D chain of cobalt hollow nanospheres, by using micromagnetic simulation. The high coercivity values (Hc is determined in the range of 600-1800 Oe) and the monotonic decrease of remanence are attributed to the shape anisotropy effect due to an increase in the aspect ratio value. The configuration of magnetization in remanence showed the onion state for hollow spheres (HSs) with Re = 15 nm, whereas for Re = 30 nm, appear the curling-vortex (CV) state. Finally for a cluster of chains, constituted by cobalt HSs, with random orientations the CV state is preserved.
Song, W., Li, X., Lou, L., Hua, Y., Zhang, Q., Huang, G., Hou, F., Zhang, X..  2018.  High-Temperature Magnetic Properties of Anisotropic SmCo7/Fe(Co) Bulk Nanocomposite Magnets. IEEE Transactions on Magnetics. 54:1–5.
High-temperature magnetic properties of the anisotropic bulk SmCo7/Fe(Co) nanocomposite magnets prepared by multistep deformation have been investigated and compared with the corresponding isotropic nanocomposites. The anisotropic SmCo7/Fe(Co) nanocomposites with a Fe(Co) fraction of 28% exhibit much higher energy products than the corresponding isotropic nanocomposites at both room and high temperatures. These magnets show a small remanence (α = -0.022%/K) and a coercivity (β = -0.25%/K) temperature coefficient which can be comparable to those of the conventional SmCo5 and Sm2Co17 high-temperature magnets. The magnetic properties of these nanocomposites at high temperatures are sensitive to the weight fractions of the Fe(Co) phase. This paper demonstrates that the anisotropic bulk SmCo7/Fe(Co) nanocomposites have better high-temperature magnetic properties than the corresponding isotropic ones.
Yu, Jiangfan, Zhang, Li.  2019.  Reconfigurable Colloidal Microrobotic Swarm for Targeted Delivery. 2019 16th International Conference on Ubiquitous Robots (UR). :615—616.

Untethered microrobots actuated by external magnetic fields have drawn extensive attention recently, due to their potential advantages in real-time tracking and targeted delivery in vivo. To control a swarm of microrobots with external fields, however, is still one of the major challenges in this field. In this work, we present new methods to generate ribbon-like and vortex-like microrobotic swarms using oscillating and rotating magnetic fields, respectively. Paramagnetic nanoparticles with a diameter of 400 nm serve as the agents. These two types of swarms exhibits out-of-equilibrium structure, in which the nanoparticles perform synchronised motions. By tuning the magnetic fields, the swarming patterns can be reversibly transformed. Moreover, by increasing the pitch angle of the applied fields, the swarms are capable of performing navigated locomotion with a controlled velocity. This work sheds light on a better understanding for microrobotic swarm behaviours and paves the way for potential biomedical applications.

Moritz, Pierre, Mathieu, Fabrice, Bourrier, David, Saya, Daisuke, Blon, Thomas, Hasselbach, Klaus, Kramer, Roman, Nicu, Liviu, Lacroix, Lise-Marie, Viau, Guillaume et al..  2019.  Development Of Micro-Magnets For The Electromagnetic Transduction Of MEMS. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :1748–1751.
This paper presents a new class of high-performance permanent micro-magnets based on the controlled assembly of cobalt nanorods for the electromagnetic transduction of MEMS. Micromagnets are fabricated using a low temperature fabrication process that yields a dense material exhibiting high coercive field and remanence to saturation magnetization ratio. The cartography of the magnetic induction produced by the sub-millimeter size magnets was obtained using a scanning Hall effect micro-probe microscope. Silicon microcantilevers placed in the vicinity of these magnets were successfully actuated using the Lorentz force with low currents. The good signal to noise ratio measured at resonance demonstrates the potentiality of these nanostructured micro-magnets.
Bickel, J. E., Aidala, K. E..  2019.  Phase Diagram of 360° Domain Walls in Magnetic Rings. IEEE Transactions on Magnetics. 55:1–6.

One method to increase bit density in magnetic memory devices is to use multi-state structures, such as a ferromagnetic nanoring with multiple domain walls (DWs), to encode information. However, there is a competition between decreasing the ring size in order to more densely pack bits and increasing it to make multiple DWs stable. This paper examines the effects of ring geometry, specifically inner and outer diameters (ODs), on the formation of 360° DWs. By sequentially increasing the strength of an applied circular magnetic field, we examine how DWs form under the applied field and whether they remain when the field is returned to zero. We examine the relationships between field strength, number of walls initially formed, and the stability of these walls at zero field for different ring geometries. We demonstrate that there is a lower limit of 200 nm to the ring diameter for the formation of any 360° DWs under an applied field, and that a high number of 360° DWs are stable at remanence only for narrow rings with large ODs.

Davila, Y. G., Júnior, F. A. Revoredo, Peña-Garcia, R., Padrón-Hernández, E..  2019.  Peak in Angular Dependence of Coercivity in a Hexagonal Array of Permalloy Spherical Nanocaps. IEEE Magnetics Letters. 10:1–3.

Micromagnetic simulations of coercivity as a function of external magnetic field direction were performed for a hexagonal array of hemispherical Permalloy nanocaps. The analysis was based on hysteresis loops for arrangements of nanocaps of variable thickness (5 nm and 10 nm). The angular dependence of coercivity had a maximum at about 80° with respect to the arrangement plane. An increase in coercivity with nanocap thickness is related to the magnetization reversal mechanism, where the dipole energy of individual caps generates an effective intermediate axis, locking the magnetic moments. The coercivity has maximum values of 109 Oe for 5 nm and 156 Oe for 10 nm thickness. The remanence decreases monotonically with angle. This is associated with the influence of shape anisotropy, where the demagnetizing field in the plane of the array is much smaller than the demagnetizing field perpendicular to the plane.

Maity, T., Roy*, S..  2017.  Manipulation of Magnetic Properties by Tunable Magnetic Dipoles in a Ferromagnetic Thin Film. IEEE Magnetics Letters. 8:1–4.
We demonstrate how a unique nanomodulation within a continuous ferromagnetic film can induce magnetic dipoles at predefined, submicrometer scale locations, which can tune the global magnetic properties of the film due to dipole-dipole interactions. Arrays of tunable magnetic dipoles are generated with in-plane and out-of-plane directions, which can be rotated in-plane within the three-dimensional (3-D) modulated structure of a continuous film. In-plane magnetic dipole rotation enables a methodology to control overall magnetic properties of a ferromagnetic thin film. Formation of magnetic dipoles and their tunability were studied in detail by magnetic force microscopy, high-resolution magnetic measurements, and micromagnetic simulation of a nanomodulated Ni45Fe55 alloy film. A pattern larger than a single magnetic domain would normally form a vortex in the remanent state. However, here the unique 3-D nanostructure prevents vortex formation due to the competition between in-plane and out-of-plane dipole-dipole interaction giving rise to a metastable state. Experimentally, at zero remanence, the magnetization goes through a transformation from a metastable to a stable state, where the dipole-dipole interaction depends on their geometrical arrangement. Thus, the magnetic properties of the continuous film can be varied by the proposed pattern geometry. A detail analytical study of the dipolar energy for the system agrees well with the experimental and simulated results.
Guerra, Y., Gomes, J. L., Peña-Garcia, R., Delgado, A., Farias, B. V. M., Fuentes, G. P., Gonçalves, L. A. P., Padrón-Hernández, E..  2016.  Micromagnetic Simulation in Hexagonal Arrays of Nanosized Hollow Nickel Spheres. IEEE Transactions on Magnetics. 52:1–6.

Arrays of nanosized hollow spheres of Ni were studied using micromagnetic simulation by the Object Oriented Micromagnetic Framework. Before all the results, we will present an analysis of the properties for an individual hollow sphere in order to separate the real effects due to the array. The results in this paper are divided into three parts in order to analyze the magnetic behaviors in the static and dynamic regimes. The first part presents calculations for the magnetic field applied parallel to the plane of the array; specifically, we present the magnetization for equilibrium configurations. The obtained magnetization curves show that decreasing the thickness of the shell decreases the coercive field and it is difficult to obtain magnetic saturation. The values of the coercive field obtained in our work are of the same order as reported in experimental studies in the literature. The magnetic response in our study is dominated by the shape effects and we obtained high values for the reduced remanence, Mr/MS = 0.8. In the second part of this paper, we have changed the orientation of the magnetic field and calculated hysteresis curves to study the angular dependence of the coercive field and remanence. In thin shells, we have observed how the moments are oriented tangentially to the spherical surface. For the inversion of the magnetic moments we have observed the formation of vortex and onion modes. In the third part of this paper, we present an analysis for the process of magnetization reversal in the dynamic regime. The analysis showed that inversion occurs in the nonhomogeneous configuration. We could see that self-demagnetizing effects are predominant in the magnetic properties of the array. We could also observe that there are two contributions: one due to the shell as an independent object and the other due to the effects of the array.