Visible to the public Biblio

Found 170 results

Filters: Keyword is artificial intelligence  [Clear All Filters]
2021-10-12
Ferraro, Angelo.  2020.  When AI Gossips. 2020 IEEE International Symposium on Technology and Society (ISTAS). :69–71.
The concept of AI Gossip is presented. It is analogous to the traditional understanding of a pernicious human failing. It is made more egregious by the technology of AI, internet, current privacy policies, and practices. The recognition by the technological community of its complacency is critical to realizing its damaging influence on human rights. A current example from the medical field is provided to facilitate the discussion and illustrate the seriousness of AI Gossip. Further study and model development is encouraged to support and facilitate the need to develop standards to address the implications and consequences to human rights and dignity.
2021-10-04
Ding, Lei, Wang, Shida, Wan, Renzhuo, Zhou, Guopeng.  2020.  Securing core information sharing and exchange by blockchain for cooperative system. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :579–583.
The privacy protection and information security are two crucial issues for future advanced artificial intelligence devices, especially for cooperative system with rich core data exchange which may offer opportunities for attackers to fake interaction messages. To combat such threat, great efforts have been made by introducing trust mechanism in initiative or passive way. Furthermore, blockchain and distributed ledger technology provide a decentralized and peer-to-peer network, which has great potential application for multi-agent system, such as IoTs and robots. It eliminates third-party interference and data in the blockchain are stored in an encrypted way permanently and anti-destroys. In this paper, a methodology of blockchain is proposed and designed for advanced cooperative system with artificial intelligence to protect privacy and sensitive data exchange between multi-agents. The validation procedure is performed in laboratory by a three-level computing networks of Raspberry Pi 3B+, NVIDIA Jetson Tx2 and local computing server for a robot system with four manipulators and four binocular cameras in peer computing nodes by Go language.
2021-09-21
Lin, Kuang-Yao, Huang, Wei-Ren.  2020.  Using Federated Learning on Malware Classification. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :585–589.
In recent years, everything has been more and more systematic, and it would generate many cyber security issues. One of the most important of these is the malware. Modern malware has switched to a high-growth phase. According to the AV-TEST Institute showed that there are over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA) be registered every day. This threat was presented and discussed in the present paper. In addition, we also considered data privacy by using federated learning. Feature extraction can be performed based on malware. The proposed method achieves very high accuracy ($\approx$0.9167) on the dataset provided by VirusTotal.
2021-09-07
Simud, Thikamporn, Ruengittinun, Somchoke, Surasvadi, Navaporn, Sanglerdsinlapachai, Nuttapong, Plangprasopchok, Anon.  2020.  A Conversational Agent for Database Query: A Use Case for Thai People Map and Analytics Platform. 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). :1–6.
Since 2018, Thai People Map and Analytics Platform (TPMAP) has been developed with the aims of supporting government officials and policy makers with integrated household and community data to analyze strategic plans, implement policies and decisions to alleviate poverty. However, to acquire complex information from the platform, non-technical users with no database background have to ask a programmer or a data scientist to query data for them. Such a process is time-consuming and might result in inaccurate information retrieved due to miscommunication between non-technical and technical users. In this paper, we have developed a Thai conversational agent on top of TPMAP to support self-service data analytics on complex queries. Users can simply use natural language to fetch information from our chatbot and the query results are presented to users in easy-to-use formats such as statistics and charts. The proposed conversational agent retrieves and transforms natural language queries into query representations with relevant entities, query intentions, and output formats of the query. We employ Rasa, an open-source conversational AI engine, for agent development. The results show that our system yields Fl-score of 0.9747 for intent classification and 0.7163 for entity extraction. The obtained intents and entities are then used for query target information from a graph database. Finally, our system achieves end-to-end performance with accuracies ranging from 57.5%-80.0%, depending on query message complexity. The generated answers are then returned to users through a messaging channel.
2021-08-31
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.
2021-08-17
Belman, Amith K., Paul, Tirthankar, Wang, Li, Iyengar, S. S., Śniatała, Paweł, Jin, Zhanpeng, Phoha, Vir V., Vainio, Seppo, Röning, Juha.  2020.  Authentication by Mapping Keystrokes to Music: The Melody of Typing. 2020 International Conference on Artificial Intelligence and Signal Processing (AISP). :1—6.
Expressing Keystroke Dynamics (KD) in form of sound opens new avenues to apply sound analysis techniques on KD. However this mapping is not straight-forward as varied feature space, differences in magnitudes of features and human interpretability of the music bring in complexities. We present a musical interface to KD by mapping keystroke features to music features. Music elements like melody, harmony, rhythm, pitch and tempo are varied with respect to the magnitude of their corresponding keystroke features. A pitch embedding technique makes the music discernible among users. Using the data from 30 users, who typed fixed strings multiple times on a desktop, shows that these auditory signals are distinguishable between users by both standard classifiers (SVM, Random Forests and Naive Bayes) and humans alike.
2021-07-27
Chaudhry, Y. S., Sharma, U., Rana, A..  2020.  Enhancing Security Measures of AI Applications. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :713—716.
Artificial Intelligence also often referred to as machine learning is being labelled to as the future has been into light since more than a decade. Artificial Intelligence designated by the acronym AI has a vast scope of development and the developers have been working on with it constantly. AI is being associated with the existing objects in the world as well as with the ones that are about to arrive to improve them and make them more reliable. AI as it states in its name is intelligence, intelligence shown by the machines to work similar to humans and work on achieving the goals they are being provided with. Another application of AI could be to provide defenses against the present cyber threats, vehicle overrides etc. Also, AI might be intelligence but, in the end, it's still a bunch of codes, hence it is prone to be corrupted or misused by the world. To prevent the misuse of the technologies, it is necessary to deploy them with a sustainable defensive system as well. Obviously, there is going to be a default defense system but it is prone to be corrupted by the hackers or malfunctioning of the intelligence in certain scenarios which can result disastrous especially in case of Robotics. A proposal referred to as the “Guard Masking” has been offered in the following paper, to provide an alternative for securing Artificial Intelligence.
2021-07-07
Moustafa, Nour, Ahmed, Mohiuddin, Ahmed, Sherif.  2020.  Data Analytics-Enabled Intrusion Detection: Evaluations of ToNİoT Linux Datasets. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :727–735.
With the widespread of Artificial Intelligence (AI)-enabled security applications, there is a need for collecting heterogeneous and scalable data sources for effectively evaluating the performances of security applications. This paper presents the description of new datasets, named ToNİoT datasets that include distributed data sources collected from Telemetry datasets of Internet of Things (IoT) services, Operating systems datasets of Windows and Linux, and datasets of Network traffic. The paper aims to describe the new testbed architecture used to collect Linux datasets from audit traces of hard disk, memory and process. The architecture was designed in three distributed layers of edge, fog, and cloud. The edge layer comprises IoT and network systems, the fog layer includes virtual machines and gateways, and the cloud layer includes data analytics and visualization tools connected with the other two layers. The layers were programmatically controlled using Software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Linux ToNİoT datasets would be used to train and validate various new federated and distributed AI-enabled security solutions such as intrusion detection, threat intelligence, privacy preservation and digital forensics. Various Data analytical and machine learning methods are employed to determine the fidelity of the datasets in terms of examining feature engineering, statistics of legitimate and security events, and reliability of security events. The datasets can be publicly accessed from [1].
Xu, Shenghao, Hung, Kevin.  2020.  Development of an AI-based System for Automatic Detection and Recognition of Weapons in Surveillance Videos. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :48–52.
Security cameras and video surveillance systems have become important infrastructures for ensuring safety and security of the general public. However, the detection of high-risk situations through these systems are still performed manually in many cities. The lack of manpower in the security sector and limited performance of human may result in undetected dangers or delay in detecting threats, posing risks for the public. In response, various parties have developed real-time and automated solutions for identifying risks based on surveillance videos. The aim of this work is to develop a low-cost, efficient, and artificial intelligence-based solution for the real-time detection and recognition of weapons in surveillance videos under different scenarios. The system was developed based on Tensorflow and preliminarily tested with a 294-second video which showed 7 weapons within 5 categories, including handgun, shotgun, automatic rifle, sniper rifle, and submachine gun. At the intersection over union (IoU) value of 0.50 and 0.75, the system achieved a precision of 0.8524 and 0.7006, respectively.
2021-06-30
Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Huang, Jianqiang, Hua, Xian-Sheng, Miao, Chunyan.  2020.  Incentive Mechanism Design for Federated Learning in the Internet of Vehicles. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1—5.
In the Internet of Vehicles (IoV) paradigm, a model owner is able to leverage on the enhanced capabilities of Intelligent Connected Vehicles (ICV) to develop promising Artificial Intelligence (AI) based applications, e.g., for traffic efficiency. However, in some cases, a model owner may have insufficient data samples to build an effective AI model. To this end, we propose a Federated Learning (FL) based privacy preserving approach to facilitate collaborative FL among multiple model owners in the IoV. Our system model enables collaborative model training without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in contract theory under information asymmetry. For the latter, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design.
Zhang, Wenrui.  2020.  Application of Attention Model Hybrid Guiding based on Artificial Intelligence in the Course of Intelligent Architecture History. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :59—62.
Application of the attention model hybrid building based on the artificial intelligence in the course of the intelligent architecture history is studied in this article. A Hadoop distributed architecture using big data processing technology which combines basic building information with the building energy consumption data for the data mining research methods, and conduct a preliminary design of a Hadoop-based public building energy consumption data mining system. The principles of the proposed model were summarized. At first, the intelligent firewall processes the decision data faster, when the harmful information invades. The intelligent firewall can monitor and also intercept the harmful information in a timelier manner. Secondly, develop a problem data processing plan, delete and identify different types of problem data, and supplement the deleted problem data according to the rules obtained by data mining. The experimental results have reflected the efficiency of the proposed model.
2021-06-24
Dang, Tran Khanh, Truong, Phat T. Tran, Tran, Pi To.  2020.  Data Poisoning Attack on Deep Neural Network and Some Defense Methods. 2020 International Conference on Advanced Computing and Applications (ACOMP). :15–22.
In recent years, Artificial Intelligence has disruptively changed information technology and software engineering with a proliferation of technologies and applications based-on it. However, recent researches show that AI models in general and the most greatest invention since sliced bread - Deep Learning models in particular, are vulnerable to being hacked and can be misused for bad purposes. In this paper, we carry out a brief review of data poisoning attack - one of the two recently dangerous emerging attacks - and the state-of-the-art defense methods for this problem. Finally, we discuss current challenges and future developments.
Ali, Muhammad, Hu, Yim-Fun, Luong, Doanh Kim, Oguntala, George, Li, Jian-Ping, Abdo, Kanaan.  2020.  Adversarial Attacks on AI based Intrusion Detection System for Heterogeneous Wireless Communications Networks. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–6.
It has been recognized that artificial intelligence (AI) will play an important role in future societies. AI has already been incorporated in many industries to improve business processes and automation. Although the aviation industry has successfully implemented flight management systems or autopilot to automate flight operations, it is expected that full embracement of AI remains a challenge. Given the rigorous validation process and the requirements for the highest level of safety standards and risk management, AI needs to prove itself being safe to operate. This paper addresses the safety issues of AI deployment in an aviation network compatible with the Future Communication Infrastructure that utilizes heterogeneous wireless access technologies for communications between the aircraft and the ground networks. It further considers the exploitation of software defined networking (SDN) technologies in the ground network while the adoption of SDN in the airborne network can be optional. Due to the nature of centralized management in SDN-based network, the SDN controller can become a single point of failure or a target for cyber attacks. To countermeasure such attacks, an intrusion detection system utilises AI techniques, more specifically deep neural network (DNN), is considered. However, an adversary can target the AI-based intrusion detection system. This paper examines the impact of AI security attacks on the performance of the DNN algorithm. Poisoning attacks targeting the DSL-KDD datasets which were used to train the DNN algorithm were launched at the intrusion detection system. Results showed that the performance of the DNN algorithm has been significantly degraded in terms of the mean square error, accuracy rate, precision rate and the recall rate.
2021-05-13
Li, Mingxuan, Yang, Zhushi, Zhong, Jinsong, He, Ling, Teng, Yangxin.  2020.  Research on Network Attack and Defense Based on Artificial Intelligence Technology. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:2532—2534.
This paper combines the common ideas and methods in offensive and defensive confrontation in recent years, and uses artificial intelligence technology-based network asset automatic mining technology and artificial intelligence technology-based vulnerability automatic exploitation technology, carries out research and specific practices in discovering and using system vulnerability based on artificial intelligence technology, designs and implemented automatic binary vulnerability discovering and exploitation system, which improves improves the efficiency and success rate of vulnerability discovering and exploitation.
Zhao, Haining, Chen, Liquan.  2020.  Artificial Intelligence Security Issues and Responses. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2276—2283.
As a current disruptive and transformative technology, artificial intelligence is constantly infiltrating all aspects of production and life. However, with the in-depth development and application of artificial intelligence, the security challenges it faces have become more and more prominent. In the real world, attacks against intelligent systems such as the Internet of Things, smart homes, and driverless cars are constantly appearing, and incidents of artificial intelligence being used in cyber-attacks and cybercrimes frequently occur. This article aims to discuss artificial intelligence security issues and propose some countermeasures.
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
Ho, Tsung-Yu, Chen, Wei-An, Huang, Chiung-Ying.  2020.  The Burden of Artificial Intelligence on Internal Security Detection. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :148—150.
Our research team have devoted to extract internal malicious behavior by monitoring the network traffic for many years. We applied the deep learning approach to recognize the malicious patterns within network, but this methodology may lead to more works to examine the results from AI models production. Hence, this paper addressed the scenario to consider the burden of AI, and proposed an idea for long-term reliable detection in the future work.
Shu, Fei, Chen, Shuting, Li, Feng, Zhang, JianYe, Chen, Jia.  2020.  Research and implementation of network attack and defense countermeasure technology based on artificial intelligence technology. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :475—478.
Using artificial intelligence technology to help network security has become a major trend. At present, major countries in the world have successively invested R & D force in the attack and defense of automatic network based on artificial intelligence. The U.S. Navy, the U.S. air force, and the DOD strategic capabilities office have invested heavily in the development of artificial intelligence network defense systems. DARPA launched the network security challenge (CGC) to promote the development of automatic attack system based on artificial intelligence. In the 2016 Defcon final, mayhem (the champion of CGC in 2014), an automatic attack team, participated in the competition with 14 human teams and once defeated two human teams, indicating that the automatic attack method generated by artificial intelligence system can scan system defects and find loopholes faster and more effectively than human beings. Japan's defense ministry also announced recently that in order to strengthen the ability to respond to network attacks, it will introduce artificial intelligence technology into the information communication network defense system of Japan's self defense force. It can be predicted that the deepening application of artificial intelligence in the field of network attack and defense may bring about revolutionary changes and increase the imbalance of the strategic strength of cyberspace in various countries. Therefore, it is necessary to systematically investigate the current situation of network attack and defense based on artificial intelligence at home and abroad, comprehensively analyze the development trend of relevant technologies at home and abroad, deeply analyze the development outline and specification of artificial intelligence attack and defense around the world, and refine the application status and future prospects of artificial intelligence attack and defense, so as to promote the development of artificial intelligence attack and Defense Technology in China and protect the core interests of cyberspace, of great significance
Hu, Xiaoyi, Wang, Ke.  2020.  Bank Financial Innovation and Computer Information Security Management Based on Artificial Intelligence. 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :572—575.
In recent years, with the continuous development of various new Internet technologies, big data, cloud computing and other technologies have been widely used in work and life. The further improvement of data scale and computing capability has promoted the breakthrough development of artificial intelligence technology. The generalization and classification of financial science and technology not only have a certain impact on the traditional financial business, but also put forward higher requirements for commercial banks to operate financial science and technology business. Artificial intelligence brings fresh experience to financial services and is conducive to increasing customer stickiness. Artificial intelligence technology helps the standardization, modeling and intelligence of banking business, and helps credit decision-making, risk early warning and supervision. This paper first discusses the influence of artificial intelligence on financial innovation, and on this basis puts forward measures for the innovation and development of bank financial science and technology. Finally, it discusses the problem of computer information security management in bank financial innovation in the era of artificial intelligence.
Sheptunov, Sergey A., Sukhanova, Natalia V..  2020.  The Problems of Design and Application of Switching Neural Networks in Creation of Artificial Intelligence. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :428–431.
The new switching architecture of the neural networks was proposed. The switching neural networks consist of the neurons and the switchers. The goal is to reduce expenses on the artificial neural network design and training. For realization of complex models, algorithms and methods of management the neural networks of the big size are required. The number of the interconnection links “everyone with everyone” grows with the number of neurons. The training of big neural networks requires the resources of supercomputers. Time of training of neural networks also depends on the number of neurons in the network. Switching neural networks are divided into fragments connected by the switchers. Training of switcher neuron network is provided by fragments. On the basis of switching neural networks the devices of associative memory were designed with the number of neurons comparable to the human brain.
2021-05-05
Poudyal, Subash, Dasgupta, Dipankar.  2020.  AI-Powered Ransomware Detection Framework. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1154—1161.

Ransomware attacks are taking advantage of the ongoing pandemics and attacking the vulnerable systems in business, health sector, education, insurance, bank, and government sectors. Various approaches have been proposed to combat ransomware, but the dynamic nature of malware writers often bypasses the security checkpoints. There are commercial tools available in the market for ransomware analysis and detection, but their performance is questionable. This paper aims at proposing an AI-based ransomware detection framework and designing a detection tool (AIRaD) using a combination of both static and dynamic malware analysis techniques. Dynamic binary instrumentation is done using PIN tool, function call trace is analyzed leveraging Cuckoo sandbox and Ghidra. Features extracted at DLL, function call, and assembly level are processed with NLP, association rule mining techniques and fed to different machine learning classifiers. Support vector machine and Adaboost with J48 algorithms achieved the highest accuracy of 99.54% with 0.005 false-positive rates for a multi-level combined term frequency approach.

2021-04-27
Piplai, A., Ranade, P., Kotal, A., Mittal, S., Narayanan, S. N., Joshi, A..  2020.  Using Knowledge Graphs and Reinforcement Learning for Malware Analysis. 2020 IEEE International Conference on Big Data (Big Data). :2626—2633.

Machine learning algorithms used to detect attacks are limited by the fact that they cannot incorporate the back-ground knowledge that an analyst has. This limits their suitability in detecting new attacks. Reinforcement learning is different from traditional machine learning algorithms used in the cybersecurity domain. Compared to traditional ML algorithms, reinforcement learning does not need a mapping of the input-output space or a specific user-defined metric to compare data points. This is important for the cybersecurity domain, especially for malware detection and mitigation, as not all problems have a single, known, correct answer. Often, security researchers have to resort to guided trial and error to understand the presence of a malware and mitigate it.In this paper, we incorporate prior knowledge, represented as Cybersecurity Knowledge Graphs (CKGs), to guide the exploration of an RL algorithm to detect malware. CKGs capture semantic relationships between cyber-entities, including that mined from open source. Instead of trying out random guesses and observing the change in the environment, we aim to take the help of verified knowledge about cyber-attack to guide our reinforcement learning algorithm to effectively identify ways to detect the presence of malicious filenames so that they can be deleted to mitigate a cyber-attack. We show that such a guided system outperforms a base RL system in detecting malware.

Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, R., Vuppalapati, J., Kedari, S..  2020.  The Role of Combinatorial Mathematical Optimization and Heuristics to improve Small Farmers to Veterinarian access and to create a Sustainable Food Future for the World. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :214–221.
The Global Demand for agriculture and dairy products is rising. Demand is expected to double by 2050. This will challenge agriculture markets in a way we have not seen before. For instance, unprecedented demand to increase in dairy farm productivity of already shrinking farms, untethered perpetual access to veterinarians by small dairy farms, economic engines of the developing countries, for animal husbandry and, finally, unprecedented need to increase productivity of veterinarians who're already understaffed, over-stressed, resource constrained to meet the current global dairy demands. The lack of innovative solutions to address the challenge would result in a major obstacle to achieve sustainable food future and a colossal roadblock ending economic disparities. The paper proposes a novel innovative data driven framework cropped by data generated using dairy Sensors and by mathematical formulations using Solvers to generate an exclusive veterinarian daily farms prioritized visit list so as to have a greater coverage of the most needed farms performed in-time and improve small farmers access to veterinarians, a precious and highly shortage & stressed resource.
2021-04-09
Mishra, A., Yadav, P..  2020.  Anomaly-based IDS to Detect Attack Using Various Artificial Intelligence Machine Learning Algorithms: A Review. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—7.
Cyber-attacks are becoming more complex & increasing tasks in accurate intrusion detection (ID). Failure to avoid intrusion can reduce the reliability of security services, for example, integrity, Privacy & availability of data. The rapid proliferation of computer networks (CNs) has reformed the perception of network security. Easily accessible circumstances affect computer networks from many threats by hackers. Threats to a network are many & hypothetically devastating. Researchers have recognized an Intrusion Detection System (IDS) up to identifying attacks into a wide variety of environments. Several approaches to intrusion detection, usually identified as Signature-based Intrusion Detection Systems (SIDS) & Anomaly-based Intrusion Detection Systems (AIDS), were proposed in the literature to address computer safety hazards. This survey paper grants a review of current IDS, complete analysis of prominent new works & generally utilized dataset to evaluation determinations. It also introduces avoidance techniques utilized by attackers to avoid detection. This paper delivers a description of AIDS for attack detection. IDS is an applied research area in artificial intelligence (AI) that uses multiple machine learning algorithms.
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.