Visible to the public Biblio

Filters: Keyword is cloud services  [Clear All Filters]
2021-03-29
Maklachkova, V. V., Dokuchaev, V. A., Statev, V. Y..  2020.  Risks Identification in the Exploitation of a Geographically Distributed Cloud Infrastructure for Storing Personal Data. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1—6.

Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.

2021-03-04
Crescenzo, G. D., Bahler, L., McIntosh, A..  2020.  Encrypted-Input Program Obfuscation: Simultaneous Security Against White-Box and Black-Box Attacks. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

We consider the problem of protecting cloud services from simultaneous white-box and black-box attacks. Recent research in cryptographic program obfuscation considers the problem of protecting the confidentiality of programs and any secrets in them. In this model, a provable program obfuscation solution makes white-box attacks to the program not more useful than black-box attacks. Motivated by very recent results showing successful black-box attacks to machine learning programs run by cloud servers, we propose and study the approach of augmenting the program obfuscation solution model so to achieve, in at least some class of application scenarios, program confidentiality in the presence of both white-box and black-box attacks.We propose and formally define encrypted-input program obfuscation, where a key is shared between the entity obfuscating the program and the entity encrypting the program's inputs. We believe this model might be of interest in practical scenarios where cloud programs operate over encrypted data received by associated sensors (e.g., Internet of Things, Smart Grid).Under standard intractability assumptions, we show various results that are not known in the traditional cryptographic program obfuscation model; most notably: Yao's garbled circuit technique implies encrypted-input program obfuscation hiding all gates of an arbitrary polynomial circuit; and very efficient encrypted-input program obfuscation for range membership programs and a class of machine learning programs (i.e., decision trees). The performance of the latter solutions has only a small constant overhead over the equivalent unobfuscated program.

2021-02-01
Chong, K. S., Yap, C. N., Tew, Z. H..  2020.  Multi-Key Homomorphic Encryption Create new Multiple Logic Gates and Arithmetic Circuit. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–4.
This is a feasibility study on homomorphic encryption using the MK-TFHE library in daily computing using cloud services. Logic gates OR, AND, XOR, XNOR, NOR were created. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were also created. This research is a continuation of a previous work and this peeks into the newly created logic gates on these arithmetic operations.
Sendhil, R., Amuthan, A..  2020.  Privacy Preserving Data Aggregation in Fog Computing using Homomorphic Encryption: An Analysis. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
In recent days the attention of the researchers has been grabbed by the advent of fog computing which is found to be a conservatory of cloud computing. The fog computing is found to be more advantageous and it solves mighty issues of the cloud namely higher delay and also no proper mobility awareness and location related awareness are found in the cloud environment. The IoT devices are connected to the fog nodes which support the cloud services to accumulate and process a component of data. The presence of Fog nodes not only reduces the demands of processing data, but it had improved the quality of service in real time scenarios. Nevertheless the fog node endures from challenges of false data injection, privacy violation in IoT devices and violating integrity of data. This paper is going to address the key issues related to homomorphic encryption algorithms which is used by various researchers for providing data integrity and authenticity of the devices with their merits and demerits.
2021-01-20
Li, Y., Yang, Y., Yu, X., Yang, T., Dong, L., Wang, W..  2020.  IoT-APIScanner: Detecting API Unauthorized Access Vulnerabilities of IoT Platform. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—5.

The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.

2020-10-16
Alkhwaldi, Abeer, Kamala, Mumtaz, Qahwaji, Rami.  2019.  Security Perceptions in Cloud-Based e-Govemment Services:. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1—9.

Security is one of the main and continual challenges that restrict government stakeholders (e.g. citizens) engagement with the cloud services. This paper has as its objective the discovery of the security perceptions of cloud-based e-government services from the citizens' and IT-staff perspectives. It investigates the factors that influence the citizen's perception of security. Little efforts have been done by previous literature to investigate and analyze the integration between citizens' concerns regarding the perceived security and those of IT -staff, the current study highlights this issue. This work provides an empirical study to understand citizens' priorities, needs and expectations regarding the perceived security of cloud-based e-government services which are a novel e-government initiative in Jordan, also enriches the existing security perceptions literature by introducing new insights. An interpretive-qualitative approach was adopted, as it helps to understand the participants' perceptions in the research natural setting.

2020-10-05
Yu, Zihuan.  2018.  Research on Cloud Computing Security Evaluation Model Based on Trust Management. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1934—1937.

At present, cloud computing technology has made outstanding contributions to the Internet in data unification and sharing applications. However, the problem of information security in cloud computing environment has to be paid attention to and effective measures have to be taken to solve it. In order to control the data security under cloud services, the DS evidence theory method is introduced. The trust management mechanism is established from the source of big data, and a cloud computing security assessment model is constructed to achieve the quantifiable analysis purpose of cloud computing security assessment. Through the simulation, the innovative way of quantifying the confidence criterion through big data trust management and DS evidence theory not only regulates the data credible quantification mechanism under cloud computing, but also improves the effectiveness of cloud computing security assessment, providing a friendly service support platform for subsequent cloud computing service.

2020-09-28
Liu, Qin, Pei, Shuyu, Xie, Kang, Wu, Jie, Peng, Tao, Wang, Guojun.  2018.  Achieving Secure and Effective Search Services in Cloud Computing. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1386–1391.
One critical challenge of today's cloud services is how to provide an effective search service while preserving user privacy. In this paper, we propose a wildcard-based multi-keyword fuzzy search (WMFS) scheme over the encrypted data, which tolerates keyword misspellings by exploiting the indecomposable property of primes. Compared with existing secure fuzzy search schemes, our WMFS scheme has the following merits: 1) Efficiency. It eliminates the requirement of a predefined dictionary and thus supports updates efficiently. 2) High accuracy. It eliminates the false positive and false negative introduced by specific data structures and thus allows the user to retrieve files as accurate as possible. 3) Flexibility. It gives the user great flexibility to specify different search patterns including keyword and substring matching. Extensive experiments on a real data set demonstrate the effectiveness and efficiency of our scheme.
2020-08-28
Zobaed, S.M., ahmad, sahan, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  ClustCrypt: Privacy-Preserving Clustering of Unstructured Big Data in the Cloud. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :609—616.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters' coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%.
2020-07-27
Torkura, Kennedy A., Sukmana, Muhammad I.H., Cheng, Feng, Meinel, Christoph.  2019.  Security Chaos Engineering for Cloud Services: Work In Progress. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–3.
The majority of security breaches in cloud infrastructure in recent years are caused by human errors and misconfigured resources. Novel security models are imperative to overcome these issues. Such models must be customer-centric, continuous, not focused on traditional security paradigms like intrusion detection and adopt proactive techniques. Thus, this paper proposes CloudStrike, a cloud security system that implements the principles of Chaos Engineering to enable the aforementioned properties. Chaos Engineering is an emerging discipline employed to prevent non-security failures in cloud infrastructure via Fault Injection Testing techniques. CloudStrike employs similar techniques with a focus on injecting failures that impact security i.e. integrity, confidentiality and availability. Essentially, CloudStrike leverages the relationship between dependability and security models. Preliminary experiments provide insightful and prospective results.
2020-07-24
Reshma, V., Gladwin, S. Joseph, Thiruvenkatesan, C..  2019.  Pairing-Free CP-ABE based Cryptography Combined with Steganography for Multimedia Applications. 2019 International Conference on Communication and Signal Processing (ICCSP). :0501—0505.

Technology development has led to rapid increase in demands for multimedia applications. Due to this demand, digital archives are increasingly used to store these multimedia contents. Cloud is the commonly used archive to store, transmit, receive and share multimedia contents. Cloud makes use of internet to perform these tasks due to which data becomes more prone to attacks. Data security and privacy are compromised. This can be avoided by limiting data access to authenticated users and by hiding the data from cloud services that cannot be trusted. Hiding data from the cloud services involves encrypting the data before storing it into the cloud. Data to be shared with other users can be encrypted by utilizing Cipher Text-Policy Attribute Based Encryption (CP-ABE). CP-ABE is used which is a cryptographic technique that controls access to the encrypted data. The pairing-based computation based on bilinearity is used in ABE due to which the requirements for resources like memory and power supply increases rapidly. Most of the devices that we use today have limited memory. Therefore, an efficient pairing free CP- ABE access control scheme using elliptic curve cryptography has been used. Pairing based computation is replaced with scalar product on elliptic curves that reduces the necessary memory and resource requirements for the users. Even though pairing free CP-ABE is used, it is easier to retrieve the plaintext of a secret message if cryptanalysis is used. Therefore, this paper proposes to combine cryptography with steganography in such a way by embedding crypto text into an image to provide increased level of data security and data ownership for sub-optimal multimedia applications. It makes it harder for a cryptanalyst to retrieve the plaintext of a secret message from a stego-object if steganalysis were not used. This scheme significantly improved the data security as well as data privacy.

2020-07-09
Liu, Chuanyi, Han, Peiyi, Dong, Yingfei, Pan, Hezhong, Duan, Shaoming, Fang, Binxing.  2019.  CloudDLP: Transparent and Automatic Data Sanitization for Browser-Based Cloud Storage. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—8.

Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities.

2020-05-22
Chen, Jing, Tong, Wencan, Li, Xiaojian, Jiang, Yiyi, Zhu, Liyu.  2019.  A Survey of Time-varying Structural Modeling to Accountable Cloud Services. 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). :9—12.

Cloud service has the computing characteristics of self-organizing strain on demand, which is prone to failure or loss of responsibility in its extensive application. In the prediction or accountability of this, the modeling of cloud service structure becomes an insurmountable priority. This paper reviews the modeling of cloud service network architecture. It mainly includes: Firstly, the research status of cloud service structure modeling is analyzed and reviewed. Secondly, the classification of time-varying structure of cloud services and the classification of time-varying structure modeling methods are summarized as a whole. Thirdly, it points out the existing problems. Finally, for cloud service accountability, research approach of time-varying structure modeling is proposed.

2020-03-23
Hirano, Manabu, Kobayashi, Ryotaro.  2019.  Machine Learning Based Ransomware Detection Using Storage Access Patterns Obtained From Live-forensic Hypervisor. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–6.
With the rapid increase in the number of Internet of Things (IoT) devices, mobile devices, cloud services, and cyber-physical systems, the large-scale cyber attacks on enterprises and public sectors have increased. In particular, ransomware attacks damaged UK's National Health Service and many enterprises around the world in 2017. Therefore, researchers have proposed ransomware detection and prevention systems. However, manual inspection in static and dynamic ransomware analysis is time-consuming and it cannot cope with the rapid increase in variants of ransomware family. Recently, machine learning has been used to automate ransomware analysis by creating a behavioral model of same ransomware family. To create effective behavioral models of ransomware, we first obtained storage access patterns of live ransomware samples and of a benign application by using a live-forensic hypervisor called WaybackVisor. To distinguish ransomware from a benign application that has similar behavior to ransomware, we carefully selected five dimensional features that were extracted both from actual ransomware's Input and Output (I/O) logs and from a benign program's I/O logs. We created and evaluated machine learning models by using Random Forest, Support Vector Machine, and K-Nearest Neighbors. Our experiments using the proposed five features of storage access patterns achieved F-measure rate of 98%.
2020-01-21
Vo, Tri Hoang, Fuhrmann, Woldemar, Fischer-Hellmann, Klaus-Peter, Furnell, Steven.  2019.  Efficient Privacy-Preserving User Identity with Purpose-Based Encryption. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.
In recent years, users may store their Personal Identifiable Information (PII) in the Cloud environment so that Cloud services may access and use it on demand. When users do not store personal data in their local machines, but in the Cloud, they may be interested in questions such as where their data are, who access it except themselves. Even if Cloud services specify privacy policies, we cannot guarantee that they will follow their policies and will not transfer user data to another party. In the past 10 years, many efforts have been taken in protecting PII. They target certain issues but still have limitations. For instance, users require interacting with the services over the frontend, they do not protect identity propagation between intermediaries and against an untrusted host, or they require Cloud services to accept a new protocol. In this paper, we propose a broader approach that covers all the above issues. We prove that our solution is efficient: the implementation can be easily adapted to existing Identity Management systems and the performance is fast. Most importantly, our approach is compliant with the General Data Protection Regulation from the European Union.
2020-01-20
Liu, Donglan, Zhang, Hao, Wang, Wenting, Zhao, Yang, Zhao, Xiaohong, Yu, Hao, Lv, Guodong, Zhao, Yong.  2019.  Research on Protection for the Database Security Based on the Cloud of Smart Grid. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :585–589.

As cloud services enter the Internet market, cloud security issues are gradually exposed. In the era of knowledge economy, the unique potential value of big data is being gradually explored. However, the control of data security is facing many challenges. According to the development status and characteristics of database within the cloud environment, this paper preliminary studies on the database security risks faced by the “three-clouds” of State Grid Corporation of China. Based on the mature standardization of information security, this paper deeply studies the database security requirements of cloud environment, and six-step method for cloud database protection is presented, which plays an important role in promoting development of security work for the cloud database. Four key technologies of cloud database security protection are introduced, including database firewall technology, sensitive data encryption, production data desensitization, and database security audit technology. It is helpful to the technology popularization of the grade protection in the security of the cloud database, and plays a great role in the construction of the security of the state grid.

2019-12-30
Kee, Ruitao, Sie, Jovan, Wong, Rhys, Yap, Chern Nam.  2019.  Arithmetic Circuit Homomorphic Encryption and Multiprocessing Enhancements. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–5.
This is a feasibility study on homomorphic encryption using the TFHE library [1] in daily computing using cloud services. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were created from the logic gates provide. This research peeks into the impact of logic gates on these operations such as latency of the gates and the operation itself. Multiprocessing enhancement were done for multiplication operation using MPI and OpenMP to reduce latency.
2019-05-20
Prabha, K. M., Saraswathi, D. P. Vidhya.  2018.  TIGER HASH KERBEROS BIOMETRIC BLOWFISH USER AUTHENTICATION FOR SECURED DATA ACCESS IN CLOUD. 2018 2nd International Conference on 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :145–151.

Cloud computing is a standard architecture for providing computing services among servers and cloud user (CU) for preserving data from unauthorized users. Therefore, the user authentication is more reliable to ensure cloud services accessed only by a genuine user. To improve the authentication accuracy, Tiger Hash-based Kerberos Biometric Blowfish Authentication (TH-KBBA) Mechanism is introduced for accessing data from server. It comprises three steps, namely Registration, Authentication and Ticket Granting. In the Registration process, client enrolls user details and stores on cloud server (CS) using tiger hashing function. User ID and password is given by CS after registration. When client wants to access data from CS, authentication server (AS) verifies user identity by sending a message. When authenticity is verified, AS accepts user as authenticated user and convinces CS that user is authentic. For convincing process, AS generates a ticket and encrypted using Blowfish encryption. Encrypted ticket is sent back to user. Then, CU sends message to server containing users ID and encrypted ticket. Finally, the server decrypts ticket using blowfish decryption and verifies the user ID. If these two ID gets matched, the CS grants requested data to the user. Experimental evaluation of TH-KBBA mechanism and existing methods are carried out with different factors such as Authentication accuracy, authentications time and confidentiality rate with respect to a number of CUs and data.

2018-04-02
Sridhar, S., Smys, S..  2017.  Intelligent Security Framework for Iot Devices Cryptography Based End-to-End Security Architecture. 2017 International Conference on Inventive Systems and Control (ICISC). :1–5.

Internet of Thing (IoT) provide services by linking the different platform devices. They have the limitation in providing intelligent service. The IoT devices are heterogeneous which includes wireless sensors to less resource constrained devices. These devices are prone to hardware/software and network attacks. If not properly secured, it may lead to security issues like privacy and confidentiality. To resolve the above problem, an Intelligent Security Framework for IoT Devices is proposed in this paper. The proposed method is made up of (1) the light weight Asymmetric cryptography for securing the End-To-End devices which protects the IoT service gateway and the low power sensor nodes and (2) implements Lattice-based cryptography for securing the Broker devices/Gateway and the cloud services. The proposed architecture implements Asymmetric Key Encryption to share session key between the nodes and then uses this session key for message transfer This protects the system from Distributed Denial of Service Attacks, eavesdropping and Quantum algorithm attacks. The proposed protocol uses the unique Device ID of the sensors to generate key pair to establish mutual authentication between Devices and Services. Finally, the Mutual authentication mechanism is implemented in the gateway.

Halvi, A. K. B., Soma, S..  2017.  A Robust and Secured Cloud Based Distributed Biometric System Using Symmetric Key Cryptography and Microsoft Cognitive API. 2017 International Conference on Computing Methodologies and Communication (ICCMC). :225–229.

Biometric authentication has been extremely popular in large scale industries. The face biometric has been used widely in various applications. Handling large numbers of face images is a challenging task in authentication of biometric system. It requires large amount of secure storage, where the registered user information can be stored. Maintaining centralized data centers to store the information requires high investment and maintenance cost, therefore there is a need for deployment of cloud services. However as there is no guaranty of the security in the cloud, user needs to implement an additional or extra layer of security before storing facial data of all registered users. In this work a unique cloud based biometric authentication system is developed using Microsoft cognitive face API. Because most of the cloud based biometric techniques are scalable it is paramount to implement a security technique which can handle the scalability. Any users can use this system for single enterprise application base over the entire enterprise application. In this work the identification number which is text information associated with each biometric image is protected by AES algorithm. The proposed technique also works under distributed system in order to have wider accessibility. The system is also being extended to validate the registered user with an image of aadhar card. An accuracy of 96% is achieved with 100 registered users face images and aadhar card images. Earlier research carried out for the development of biometric system either suffers from development of distributed system are security aspects to handle multiple biometric information such as facial image and aadhar card image.

Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.

2018-02-02
Ghosh, U., Chatterjee, P., Tosh, D., Shetty, S., Xiong, K., Kamhoua, C..  2017.  An SDN Based Framework for Guaranteeing Security and Performance in Information-Centric Cloud Networks. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :749–752.

Cloud data centers are critical infrastructures to deliver cloud services. Although security and performance of cloud data centers have been well studied in the past, their networking aspects are overlooked. Current network infrastructures in cloud data centers limit the ability of cloud provider to offer guaranteed cloud network resources to users. In order to ensure security and performance requirements as defined in the service level agreement (SLA) between cloud user and provider, cloud providers need the ability to provision network resources dynamically and on the fly. The main challenge for cloud provider in utilizing network resource can be addressed by provisioning virtual networks that support information centric services by separating the control plane from the cloud infrastructure. In this paper, we propose an sdn based information centric cloud framework to provision network resources in order to support elastic demands of cloud applications depending on SLA requirements. The framework decouples the control plane and data plane wherein the conceptually centralized control plane controls and manages the fully distributed data plane. It computes the path to ensure security and performance of the network. We report initial experiment on average round-trip delay between consumers and producers.

2017-12-28
Manoja, I., Sk, N. S., Rani, D. R..  2017.  Prevention of DDoS attacks in cloud environment. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC). :235–239.

Cloud computing emerges as an endowment technological data for the longer term and increasing on one of the standards of utility computing is most likely claimed to symbolize a wholly new paradigm for viewing and getting access to computational assets. As a result of protection problem many purchasers hesitate in relocating their touchy data on the clouds, regardless of gigantic curiosity in cloud-based computing. Security is a tremendous hassle, considering the fact that so much of firms present a alluring goal for intruders and the particular considerations will pursue to lower the advancement of distributed computing if not located. Hence, this recent scan and perception is suitable to honeypot. Distributed Denial of Service (DDoS) is an assault that threats the availability of the cloud services. It's fundamental investigate the most important features of DDoS Defence procedures. This paper provides exact techniques that been carried out to the DDoS attack. These approaches are outlined in these paper and use of applied sciences for special kind of malfunctioning within the cloud.

2017-12-20
Alshehri, A., Sandhu, R..  2017.  Access Control Models for Virtual Object Communication in Cloud-Enabled IoT. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :16–25.
The Internet of Things (IoT) is the latest evolution of the Internet, encompassing an enormous number of connected physical "things." The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. A central aspect of ACO is to control communication among VOs. This paper develops operational and administrative access control models for this purpose, assuming topic-based publishsubscribe interaction among VOs. Operational models are developed using (i) access control lists for topics and capabilities for virtual objects and (ii) attribute-based access control, and it is argued that role-based access control is not suitable for this purpose. Administrative models for these two operational models are developed using (i) access control lists, (ii) role-based access control, and (iii) attribute-based access control. A use case illustrates the details of these access control models for VO communication, and their differences. An assessment of these models with respect to security and privacy preserving objectives of IoT is also provided.
2017-12-12
Fernando, R., Ranchal, R., Bhargava, B., Angin, P..  2017.  A Monitoring Approach for Policy Enforcement in Cloud Services. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). :600–607.

When clients interact with a cloud-based service, they expect certain levels of quality of service guarantees. These are expressed as security and privacy policies, interaction authorization policies, and service performance policies among others. The main security challenge in a cloud-based service environment, typically modeled using service-oriented architecture (SOA), is that it is difficult to trust all services in a service composition. In addition, the details of the services involved in an end-to-end service invocation chain are usually not exposed to the clients. The complexity of the SOA services and multi-tenancy in the cloud environment leads to a large attack surface. In this paper we propose a novel approach for end-to-end security and privacy in cloud-based service orchestrations, which uses a service activity monitor to audit activities of services in a domain. The service monitor intercepts interactions between a client and services, as well as among services, and provides a pluggable interface for different modules to analyze service interactions and make dynamic decisions based on security policies defined over the service domain. Experiments with a real-world service composition scenario demonstrate that the overhead of monitoring is acceptable for real-time operation of Web services.