Visible to the public Biblio

Found 166 results

Filters: Keyword is pattern classification  [Clear All Filters]
2020-08-10
Wasi, Sarwar, Shams, Sarmad, Nasim, Shahzad, Shafiq, Arham.  2019.  Intrusion Detection Using Deep Learning and Statistical Data Analysis. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1–5.
Innovation and creativity have played an important role in the development of every field of life, relatively less but it has created several problems too. Intrusion detection is one of those problems which became difficult with the advancement in computer networks, multiple researchers with multiple techniques have come forward to solve this crucial issue, but network security is still a challenge. In our research, we have come across an idea to detect intrusion using a deep learning algorithm in combination with statistical data analysis of KDD cup 99 datasets. Firstly, we have applied statistical analysis on the given data set to generate a simplified form of data, so that a less complex binary classification model of artificial neural network could apply for data classification. Our system has decreased the complexity of the system and has improved the response time.
2020-07-13
Agrawal, Shriyansh, Sanagavarapu, Lalit Mohan, Reddy, YR.  2019.  FACT - Fine grained Assessment of web page CredibiliTy. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :1088–1097.
With more than a trillion web pages, there is a plethora of content available for consumption. Search Engine queries invariably lead to overwhelming information, parts of it relevant and some others irrelevant. Often the information provided can be conflicting, ambiguous, and inconsistent contributing to the loss of credibility of the content. In the past, researchers have proposed approaches for credibility assessment and enumerated factors influencing the credibility of web pages. In this work, we detailed a WEBCred framework for automated genre-aware credibility assessment of web pages. We developed a tool based on the proposed framework to extract web page features instances and identify genre a web page belongs to while assessing it's Genre Credibility Score ( GCS). We validated our approach on `Information Security' dataset of 8,550 URLs with 171 features across 7 genres. The supervised learning algorithm, Gradient Boosted Decision Tree classified genres with 88.75% testing accuracy over 10 fold cross-validation, an improvement over the current benchmark. We also examined our approach on `Health' domain web pages and had comparable results. The calculated GCS correlated 69% with crowdsourced Web Of Trust ( WOT) score and 13% with algorithm based Alexa ranking across 5 Information security groups. This variance in correlation states that our GCS approach aligns with human way ( WOT) as compared to algorithmic way (Alexa) of web assessment in both the experiments.
2020-07-09
Nisha, D, Sivaraman, E, Honnavalli, Prasad B.  2019.  Predicting and Preventing Malware in Machine Learning Model. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Machine learning is a major area in artificial intelligence, which enables computer to learn itself explicitly without programming. As machine learning is widely used in making decision automatically, attackers have strong intention to manipulate the prediction generated my machine learning model. In this paper we study about the different types of attacks and its countermeasures on machine learning model. By research we found that there are many security threats in various algorithms such as K-nearest-neighbors (KNN) classifier, random forest, AdaBoost, support vector machine (SVM), decision tree, we revisit existing security threads and check what are the possible countermeasures during the training and prediction phase of machine learning model. In machine learning model there are 2 types of attacks that is causative attack which occurs during the training phase and exploratory attack which occurs during the prediction phase, we will also discuss about the countermeasures on machine learning model, the countermeasures are data sanitization, algorithm robustness enhancement, and privacy preserving techniques.

2020-07-06
Attarian, Reyhane, Hashemi, Sattar.  2019.  Investigating the Streaming Algorithms Usage in Website Fingerprinting Attack Against Tor Privacy Enhancing Technology. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :33–38.
Website fingerprinting attack is a kind of traffic analysis attack that aims to identify the URL of visited websites using the Tor browser. Previous website fingerprinting attacks were based on batch learning methods which assumed that the traffic traces of each website are independent and generated from the stationary probability distribution. But, in realistic scenarios, the websites' concepts can change over time (dynamic websites) that is known as concept drift. To deal with data whose distribution change over time, the classifier model must update its model permanently and be adaptive to concept drift. Streaming algorithms are dynamic models that have these features and lead us to make a comparison of various representative data stream classification algorithms for website fingerprinting. Given to our experiments and results, by considering streaming algorithms along with statistical flow-based network traffic features, the accuracy grows significantly.
2020-07-03
Usama, Muhammad, Asim, Muhammad, Qadir, Junaid, Al-Fuqaha, Ala, Imran, Muhammad Ali.  2019.  Adversarial Machine Learning Attack on Modulation Classification. 2019 UK/ China Emerging Technologies (UCET). :1—4.

Modulation classification is an important component of cognitive self-driving networks. Recently many ML-based modulation classification methods have been proposed. We have evaluated the robustness of 9 ML-based modulation classifiers against the powerful Carlini & Wagner (C-W) attack and showed that the current ML-based modulation classifiers do not provide any deterrence against adversarial ML examples. To the best of our knowledge, we are the first to report the results of the application of the C-W attack for creating adversarial examples against various ML models for modulation classification.

Li, Feiyan, Li, Wei, Huo, Hongtao, Ran, Qiong.  2019.  Decision Fusion Based on Joint Low Rank and Sparse Component for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :401—404.

Sparse and low rank matrix decomposition is a method that has recently been developed for estimating different components of hyperspectral data. The rank component is capable of preserving global data structures of data, while a sparse component can select the discriminative information by preserving details. In order to take advantage of both, we present a novel decision fusion based on joint low rank and sparse component (DFJLRS) method for hyperspectral imagery in this paper. First, we analyzed the effects of different components on classification results. Then a novel method adopts a decision fusion strategy which combines a SVM classifier with the information provided by joint sparse and low rank components. With combination of the advantages, the proposed method is both representative and discriminative. The proposed algorithm is evaluated using several hyperspectral images when compared with traditional counterparts.

2020-06-22
Lv, Chaoxian, Li, Qianmu, Long, Huaqiu, Ren, Yumei, Ling, Fei.  2019.  A Differential Privacy Random Forest Method of Privacy Protection in Cloud. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :470–475.
This paper proposes a new random forest classification algorithm based on differential privacy protection. In order to reduce the impact of differential privacy protection on the accuracy of random forest classification, a hybrid decision tree algorithm is proposed in this paper. The hybrid decision tree algorithm is applied to the construction of random forest, which balances the privacy and classification accuracy of the random forest algorithm based on differential privacy. Experiment results show that the random forest algorithm based on differential privacy can provide high privacy protection while ensuring high classification performance, achieving a balance between privacy and classification accuracy, and has practical application value.
2020-06-19
Chandra, Yogesh, Jana, Antoreep.  2019.  Improvement in Phishing Websites Detection Using Meta Classifiers. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :637—641.

In the era of the ever-growing number of smart devices, fraudulent practices through Phishing Websites have become an increasingly severe threat to modern computers and internet security. These websites are designed to steal the personal information from the user and spread over the internet without the knowledge of the user using the system. These websites give a false impression of genuinity to the user by mirroring the real trusted web pages which then leads to the loss of important credentials of the user. So, Detection of such fraudulent websites is an essence and the need of the hour. In this paper, various classifiers have been considered and were found that ensemble classifiers predict to utmost efficiency. The idea behind was whether a combined classifier model performs better than a single classifier model leading to a better efficiency and accuracy. In this paper, for experimentation, three Meta Classifiers, namely, AdaBoostM1, Stacking, and Bagging have been taken into consideration for performance comparison. It is found that Meta Classifier built by combining of simple classifier(s) outperform the simple classifier's performance.

2020-06-08
Huang, Jiamin, Lu, Yueming, Guo, Kun.  2019.  A Hybrid Packet Classification Algorithm Based on Hash Table and Geometric Space Partition. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :587–592.
The emergence of integrated space-ground network (ISGN), with more complex network conditions compared with tradition network, requires packet classification to achieve high performance. Packet classification plays an important role in the field of network security. Although several existing classification schemes have been proposed recently to improve classification performance, the performance of these schemes is unable to meet the high-speed packet classification requirement in ISGN. To tackle this problem, a hybrid packet classification algorithm based on hash table and geometric space partition (HGSP) is proposed in this paper. HGSP falls into two sections: geometric space partition and hash matching. To improve the classification speed under the same accuracy, a parallel structure of hash table is designed to match the huge packets for classifying. The experimental results demonstrate that the matching time of HGSP algorithm is reduced by 40%-70% compared with traditional Hicuts algorithm. Particularly, with the growth of ruleset, the advantage of HGSP algorithm will become more obvious.
2020-05-22
Geetha, R, Rekha, Pasupuleti, Karthika, S.  2018.  Twitter Opinion Mining and Boosting Using Sentiment Analysis. 2018 International Conference on Computer, Communication, and Signal Processing (ICCCSP). :1—4.

Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.

Despotovski, Filip, Gusev, Marjan, Zdraveski, Vladimir.  2018.  Parallel Implementation of K-Nearest-Neighbors for Face Recognition. 2018 26th Telecommunications Forum (℡FOR). :1—4.
Face recognition is a fast-expanding field of research. Countless classification algorithms have found use in face recognition, with more still being developed, searching for better performance and accuracy. For high-dimensional data such as images, the K-Nearest-Neighbours classifier is a tempting choice. However, it is very computationally-intensive, as it has to perform calculations on all items in the stored dataset for each classification it makes. Fortunately, there is a way to speed up the process by performing some of the calculations in parallel. We propose a parallel CUDA implementation of the KNN classifier and then compare it to a serial implementation to demonstrate its performance superiority.
Abdelhadi, Ameer M.S., Bouganis, Christos-Savvas, Constantinides, George A..  2019.  Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization. 2019 International Conference on Field-Programmable Technology (ICFPT). :90—98.
A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization (PQ) based ANN search methods have demonstrated state-of-the-art performance in several problems, including classification, regression and information retrieval. The dataset is encoded into a Cartesian product of multiple low-dimensional codebooks, enabling faster search and higher compression. Being intrinsically parallel, PQ-based ANN search approaches are amendable for hardware acceleration. This paper proposes a novel Hierarchical PQ (HPQ) based ANN search method as well as an FPGA-tailored architecture for its implementation that outperforms current state of the art systems. HPQ gradually refines the search space, reducing the number of data compares and enabling a pipelined search. The mapping of the architecture on a Stratix 10 FPGA device demonstrates over ×250 speedups over current state-of-the-art systems, opening the space for addressing larger datasets and/or improving the query times of current systems.
2020-05-18
Zhu, Meng, Yang, Xudong.  2019.  Chinese Texts Classification System. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :149–152.
In this article, we designed an automatic Chinese text classification system aiming to implement a system for classifying news texts. We propose two improved classification algorithms as two different choices for users to choose and then our system uses the chosen method for the obtaining of the classified result of the input text. There are two improved algorithms, one is k-Bayes using hierarchy conception based on NB method in machine learning field and another one adds attention layer to the convolutional neural network in deep learning field. Through experiments, our results showed that improved classification algorithms had better accuracy than based algorithms and our system is useful for making classifying news texts more reasonably and effectively.
Lee, Hyun-Young, Kang, Seung-Shik.  2019.  Word Embedding Method of SMS Messages for Spam Message Filtering. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
SVM has been one of the most popular machine learning method for the binary classification such as sentiment analysis and spam message filtering. We explored a word embedding method for the construction of a feature vector and the deep learning method for the binary classification. CBOW is used as a word embedding technique and feedforward neural network is applied to classify SMS messages into ham or spam. The accuracy of the two classification methods of SVM and neural network are compared for the binary classification. The experimental result shows that the accuracy of deep learning method is better than the conventional machine learning method of SVM-light in the binary classification.
Sel, Slhami, Hanbay, Davut.  2019.  E-Mail Classification Using Natural Language Processing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Thanks to the rapid increase in technology and electronic communications, e-mail has become a serious communication tool. In many applications such as business correspondence, reminders, academic notices, web page memberships, e-mail is used as primary way of communication. If we ignore spam e-mails, there remain hundreds of e-mails received every day. In order to determine the importance of received e-mails, the subject or content of each e-mail must be checked. In this study we proposed an unsupervised system to classify received e-mails. Received e-mails' coordinates are determined by a method of natural language processing called as Word2Vec algorithm. According to the similarities, processed data are grouped by k-means algorithm with an unsupervised training model. In this study, 10517 e-mails were used in training. The success of the system is tested on a test group of 200 e-mails. In the test phase M3 model (window size 3, min. Word frequency 10, Gram skip) consolidated the highest success (91%). Obtained results are evaluated in section VI.
Kadebu, Prudence, Thada, Vikas, Chiurunge, Panashe.  2018.  Natural Language Processing and Deep Learning Towards Security Requirements Classification. 2018 3rd International Conference on Contemporary Computing and Informatics (IC3I). :135–140.
Security Requirements classification is an important area to the Software Engineering community in order to build software that is secure, robust and able to withstand attacks. This classification facilitates proper analysis of security requirements so that adequate security mechanisms are incorporated in the development process. Machine Learning techniques have been used in Security Requirements classification to aid in the process that lead to ensuring that correct security mechanisms are designed corresponding to the Security Requirements classifications made to eliminate the risk of security being incorporated in the late stages of development. However, these Machine Learning techniques have been found to have problems including, handcrafting of features, overfitting and failure to perform well with high dimensional data. In this paper we explore Natural Language Processing and Deep Learning to determine if this can be applied to Security Requirements classification.
2020-05-15
Ge, Mengmeng, Fu, Xiping, Syed, Naeem, Baig, Zubair, Teo, Gideon, Robles-Kelly, Antonio.  2019.  Deep Learning-Based Intrusion Detection for IoT Networks. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :256—25609.

Internet of Things (IoT) has an immense potential for a plethora of applications ranging from healthcare automation to defence networks and the power grid. The security of an IoT network is essentially paramount to the security of the underlying computing and communication infrastructure. However, due to constrained resources and limited computational capabilities, IoT networks are prone to various attacks. Thus, safeguarding the IoT network from adversarial attacks is of vital importance and can be realised through planning and deployment of effective security controls; one such control being an intrusion detection system. In this paper, we present a novel intrusion detection scheme for IoT networks that classifies traffic flow through the application of deep learning concepts. We adopt a newly published IoT dataset and generate generic features from the field information in packet level. We develop a feed-forward neural networks model for binary and multi-class classification including denial of service, distributed denial of service, reconnaissance and information theft attacks against IoT devices. Results obtained through the evaluation of the proposed scheme via the processed dataset illustrate a high classification accuracy.

2020-05-11
Cui, Zhicheng, Zhang, Muhan, Chen, Yixin.  2018.  Deep Embedding Logistic Regression. 2018 IEEE International Conference on Big Knowledge (ICBK). :176–183.
Logistic regression (LR) is used in many areas due to its simplicity and interpretability. While at the same time, those two properties limit its classification accuracy. Deep neural networks (DNNs), instead, achieve state-of-the-art performance in many domains. However, the nonlinearity and complexity of DNNs make it less interpretable. To balance interpretability and classification performance, we propose a novel nonlinear model, Deep Embedding Logistic Regression (DELR), which augments LR with a nonlinear dimension-wise feature embedding. In DELR, each feature embedding is learned through a deep and narrow neural network and LR is attached to decide feature importance. A compact and yet powerful model, DELR offers great interpretability: it can tell the importance of each input feature, yield meaningful embedding of categorical features, and extract actionable changes, making it attractive for tasks such as market analysis and clinical prediction.
Khan, Riaz Ullah, Zhang, Xiaosong, Alazab, Mamoun, Kumar, Rajesh.  2019.  An Improved Convolutional Neural Network Model for Intrusion Detection in Networks. 2019 Cybersecurity and Cyberforensics Conference (CCC). :74–77.

Network intrusion detection is an important component of network security. Currently, the popular detection technology used the traditional machine learning algorithms to train the intrusion samples, so as to obtain the intrusion detection model. However, these algorithms have the disadvantage of low detection rate. Deep learning is more advanced technology that automatically extracts features from samples. In view of the fact that the accuracy of intrusion detection is not high in traditional machine learning technology, this paper proposes a network intrusion detection model based on convolutional neural network algorithm. The model can automatically extract the effective features of intrusion samples, so that the intrusion samples can be accurately classified. Experimental results on KDD99 datasets show that the proposed model can greatly improve the accuracy of intrusion detection.

singh, Kunal, Mathai, K. James.  2019.  Performance Comparison of Intrusion Detection System Between Deep Belief Network (DBN)Algorithm and State Preserving Extreme Learning Machine (SPELM) Algorithm. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–7.
This paper work is focused on Performance comparison of intrusion detection system between DBN Algorithm and SPELM Algorithm. Researchers have used this new algorithm SPELM to perform experiments in the area of face recognition, pedestrian detection, and for network intrusion detection in the area of cyber security. The scholar used the proposed State Preserving Extreme Learning Machine(SPELM) algorithm as machine learning classifier and compared it's performance with Deep Belief Network (DBN) algorithm using NSL KDD dataset. The NSL- KDD dataset has four lakhs of data record; out of which 40% of data were used for training purposes and 60% data used in testing purpose while calculating the performance of both the algorithms. The experiment as performed by the scholar compared the Accuracy, Precision, recall and Computational Time of existing DBN algorithm with proposed SPELM Algorithm. The findings have show better performance of SPELM; when compared its accuracy of 93.20% as against 52.8% of DBN algorithm;69.492 Precision of SPELM as against 66.836 DBN and 90.8 seconds of Computational time taken by SPELM as against 102 seconds DBN Algorithm.
2020-05-08
Katasev, Alexey S., Emaletdinova, Lilia Yu., Kataseva, Dina V..  2018.  Neural Network Spam Filtering Technology. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

In this paper we solve the problem of neural network technology development for e-mail messages classification. We analyze basic methods of spam filtering such as a sender IP-address analysis, spam messages repeats detection and the Bayesian filtering according to words. We offer the neural network technology for solving this problem because the neural networks are universal approximators and effective in addressing the problems of classification. Also, we offer the scheme of this technology for e-mail messages “spam”/“not spam” classification. The creation of effective neural network model of spam filtering is performed within the databases knowledge discovery technology. For this training set is formed, the neural network model is trained, its value and classifying ability are estimated. The experimental studies have shown that a developed artificial neural network model is adequate and it can be effectively used for the e-mail messages classification. Thus, in this paper we have shown the possibility of the effective neural network model use for the e-mail messages filtration and have shown a scheme of artificial neural network model use as a part of the e-mail spam filtering intellectual system.

Chaudhary, Anshika, Mittal, Himangi, Arora, Anuja.  2019.  Anomaly Detection using Graph Neural Networks. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :346—350.

Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.

2020-04-24
Shuvro, Rezoan A., Das, Pankaz, Hayat, Majeed M., Talukder, Mitun.  2019.  Predicting Cascading Failures in Power Grids using Machine Learning Algorithms. 2019 North American Power Symposium (NAPS). :1—6.
Although there has been notable progress in modeling cascading failures in power grids, few works included using machine learning algorithms. In this paper, cascading failures that lead to massive blackouts in power grids are predicted and classified into no, small, and large cascades using machine learning algorithms. Cascading-failure data is generated using a cascading failure simulator framework developed earlier. The data set includes the power grid operating parameters such as loading level, level of load shedding, the capacity of the failed lines, and the topological parameters such as edge betweenness centrality and the average shortest distance for numerous combinations of two transmission line failures as features. Then several machine learning algorithms are used to classify cascading failures. Further, linear regression is used to predict the number of failed transmission lines and the amount of load shedding during a cascade based on initial feature values. This data-driven technique can be used to generate cascading failure data set for any real-world power grids and hence, power-grid engineers can use this approach for cascade data generation and hence predicting vulnerabilities and enhancing robustness of the grid.
2020-04-17
Jang, Yunseok, Zhao, Tianchen, Hong, Seunghoon, Lee, Honglak.  2019.  Adversarial Defense via Learning to Generate Diverse Attacks. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). :2740—2749.

With the remarkable success of deep learning, Deep Neural Networks (DNNs) have been applied as dominant tools to various machine learning domains. Despite this success, however, it has been found that DNNs are surprisingly vulnerable to malicious attacks; adding a small, perceptually indistinguishable perturbations to the data can easily degrade classification performance. Adversarial training is an effective defense strategy to train a robust classifier. In this work, we propose to utilize the generator to learn how to create adversarial examples. Unlike the existing approaches that create a one-shot perturbation by a deterministic generator, we propose a recursive and stochastic generator that produces much stronger and diverse perturbations that comprehensively reveal the vulnerability of the target classifier. Our experiment results on MNIST and CIFAR-10 datasets show that the classifier adversarially trained with our method yields more robust performance over various white-box and black-box attacks.

Xie, Cihang, Wu, Yuxin, Maaten, Laurens van der, Yuille, Alan L., He, Kaiming.  2019.  Feature Denoising for Improving Adversarial Robustness. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :501—509.

Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 — it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by 10%. Code is available at https://github.com/facebookresearch/ImageNet-Adversarial-Training.