Visible to the public Biblio

Filters: Keyword is physical security  [Clear All Filters]
2020-12-28
Zhang, Y., Weng, J., Ling, Z., Pearson, B., Fu, X..  2020.  BLESS: A BLE Application Security Scanning Framework. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :636—645.
Bluetooth Low Energy (BLE) is a widely adopted wireless communication technology in the Internet of Things (IoT). BLE offers secure communication through a set of pairing strategies. However, these pairing strategies are obsolete in the context of IoT. The security of BLE based devices relies on physical security, but a BLE enabled IoT device may be deployed in a public environment without physical security. Attackers who can physically access a BLE-based device will be able to pair with it and may control it thereafter. Therefore, manufacturers may implement extra authentication mechanisms at the application layer to address this issue. In this paper, we design and implement a BLE Security Scan (BLESS) framework to identify those BLE apps that do not implement encryption or authentication at the application layer. Taint analysis is used to track if BLE apps use nonces and cryptographic keys, which are critical to cryptographic protocols. We scan 1073 BLE apps and find that 93% of them are not secure. To mitigate this problem, we propose and implement an application-level defense with a low-cost \$0.55 crypto co-processor using public key cryptography.
2020-12-21
Guo, W., Atthanayake, I., Thomas, P..  2020.  Vertical Underwater Molecular Communications via Buoyancy: Gaussian Velocity Distribution of Signal. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Underwater communication is vital for a variety of defence and scientific purposes. Current optical and sonar based carriers can deliver high capacity data rates, but their range and reliability is hampered by heavy propagation loss. A vertical Molecular Communication via Buoyancy (MCvB) channel is experimentally investigated here, where the dominant propagation force is buoyancy. Sequential puffs representing modulated symbols are injected and after the initial loss of momentum, the signal is driven by buoyancy forces which apply to both upwards and downwards channels. Coupled with the complex interaction of turbulent and viscous diffusion, we experimentally demonstrate that sequential symbols exhibit a Gaussian velocity spatial distribution. Our experimental results use Particle Image Velocimetry (PIV) to trace molecular clusters and infer statistical characteristics of their velocity profile. We believe our experimental paper's results can be the basis for long range underwater vertical communication between a deep sea vehicle and a surface buoy, establishing a covert and reliable delay-tolerant data link. The statistical distribution found in this paper is akin to the antenna pattern and the knowledge can be used to improve physical security.
2020-04-06
Ahmed, Syed Umaid, Sabir, Arbaz, Ashraf, Talha, Ashraf, Usama, Sabir, Shahbaz, Qureshi, Usama.  2019.  Security Lock with Effective Verification Traits. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :164–169.
To manage and handle the issues of physical security in the modern world, there is a dire need for a multilevel security system to ensure the safety of precious belongings that could be money, military equipment or medical life-saving drugs. Security locker solution is proposed which is a multiple layer security system consisting of various levels of authentication. In most cases, only relevant persons should have access to their precious belongings. The unlocking of the box is only possible when all of the security levels are successfully cleared. The five levels of security include entering of password on interactive GUI, thumbprint, facial recognition, speech pattern recognition, and vein pattern recognition. This project is unique and effective in a sense that it incorporates five levels of security in a single prototype with the use of cost-effective equipment. Assessing our security system, it is seen that security is increased many a fold as it is near to impossible to breach all these five levels of security. The Raspberry Pi microcomputers, handling all the traits efficiently and smartly makes it easy for performing all the verification tasks. The traits used involves checking, training and verifying processes with application of machine learning operations.
2019-10-08
Khalid, Ayesha, Oder, Tobias, Valencia, Felipe, O' Neill, Maire, Güneysu, Tim, Regazzoni, Francesco.  2018.  Physical Protection of Lattice-Based Cryptography: Challenges and Solutions. Proceedings of the 2018 on Great Lakes Symposium on VLSI. :365–370.

The impending realization of scalable quantum computers will have a significant impact on today's security infrastructure. With the advent of powerful quantum computers public key cryptographic schemes will become vulnerable to Shor's quantum algorithm, undermining the security current communications systems. Post-quantum (or quantum-resistant) cryptography is an active research area, endeavoring to develop novel and quantum resistant public key cryptography. Amongst the various classes of quantum-resistant cryptography schemes, lattice-based cryptography is emerging as one of the most viable options. Its efficient implementation on software and on commodity hardware has already been shown to compete and even excel the performance of current classical security public-key schemes. This work discusses the next step in terms of their practical deployment, i.e., addressing the physical security of lattice-based cryptographic implementations. We survey the state-of-the-art in terms of side channel attacks (SCA), both invasive and passive attacks, and proposed countermeasures. Although the weaknesses exposed have led to countermeasures for these schemes, the cost, practicality and effectiveness of these on multiple implementation platforms, however, remains under-studied.

2019-08-26
Mavroeidis, V., Vishi, K., Jøsang, A..  2018.  A Framework for Data-Driven Physical Security and Insider Threat Detection. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :1108–1115.

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.

2018-02-14
Stubbs, J. J., Birch, G. C., Woo, B. L., Kouhestani, C. G..  2017.  Physical security assessment with convolutional neural network transfer learning. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Deep learning techniques have demonstrated the ability to perform a variety of object recognition tasks using visible imager data; however, deep learning has not been implemented as a means to autonomously detect and assess targets of interest in a physical security system. We demonstrate the use of transfer learning on a convolutional neural network (CNN) to significantly reduce training time while keeping detection accuracy of physical security relevant targets high. Unlike many detection algorithms employed by video analytics within physical security systems, this method does not rely on temporal data to construct a background scene; targets of interest can halt motion indefinitely and still be detected by the implemented CNN. A key advantage of using deep learning is the ability for a network to improve over time. Periodic retraining can lead to better detection and higher confidence rates. We investigate training data size versus CNN test accuracy using physical security video data. Due to the large number of visible imagers, significant volume of data collected daily, and currently deployed human in the loop ground truth data, physical security systems present a unique environment that is well suited for analysis via CNNs. This could lead to the creation of algorithmic element that reduces human burden and decreases human analyzed nuisance alarms.

2017-04-03
Medwed, Marcel.  2016.  IoT Security Challenges and Ways Forward. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :55–55.

Today 2.9 billion people, or 40% of the world's population are online. By 2020, at least 40 billion more devices will become smart via embedded processors. The impact of such Internet of Things (IoT) on our society will be extraordinary. It will influence most consumer and business sectors, impact education, healthcare and safety. However, it certainly will also pose a challenge from a security point of view. Not only will the devices themselves become more complex, also the interaction between devices, the networks and the variance in topology will grow. Finally, with increasing amounts of data and assets at stake the incentive for attackers will increase. The costs of cyber attacks in such setting are estimated to reach about 2 trillion USD by 2020. Today, the IoT is just beginning to emerge. Unfortunately, when looking at its security, there is lots of room for improvement. Exploits reported at a steady pace clearly suggest that security is a major challenge when the world wants to successfully switch from an IoT hype to a real IoT deployment. Security, and security risk awareness, insufficiently present in today's consumer and developer mindset, are only a starting point. Once the requirement for strong security is widely accepted, there will be still the economical question of who is going to pay for security and its maintenance. Without enforcing certain standards by means of third party evaluation this problem is expected to be hard to get under control.

Wadhawan, Yatin, Neuman, Clifford.  2016.  Defending Cyber-Physical Attacks on Oil Pipeline Systems: A Game-Theoretic Approach. Proceedings of the 1st International Workshop on AI for Privacy and Security. :7:1–7:8.

The security of critical infrastructures such as oil and gas cyber-physical systems is a significant concern in today's world where malicious activities are frequent like never before. On one side we have cyber criminals who compromise cyber infrastructure to control physical processes; we also have physical criminals who attack the physical infrastructure motivated to destroy the target or to steal oil from pipelines. Unfortunately, due to limited resources and physical dispersion, it is impossible for the system administrator to protect each target all the time. In this research paper, we tackle the problem of cyber and physical attacks on oil pipeline infrastructure by proposing a Stackelberg Security Game of three players: system administrator as a leader, cyber and physical attackers as followers. The novelty of this paper is that we have formulated a real world problem of oil stealing using a game theoretic approach. The game has two different types of targets attacked by two distinct types of adversaries with different motives and who can coordinate to maximize their rewards. The solution to this game assists the system administrator of the oil pipeline cyber-physical system to allocate the cyber security controls for the cyber targets and to assign patrol teams to the pipeline regions efficiently. This paper provides a theoretical framework for formulating and solving the above problem.

2017-03-08
Allen, J. H., Curtis, P. D., Mehravari, N., Crabb, G..  2015.  A proven method for identifying security gaps in international postal and transportation critical infrastructure. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

The safety, security, and resilience of international postal, shipping, and transportation critical infrastructure are vital to the global supply chain that enables worldwide commerce and communications. But security on an international scale continues to fail in the face of new threats, such as the discovery by Panamanian authorities of suspected components of a surface-to-air missile system aboard a North Korean-flagged ship in July 2013 [1].This reality calls for new and innovative approaches to critical infrastructure security. Owners and operators of critical postal, shipping, and transportation operations need new methods to identify, assess, and mitigate security risks and gaps in the most effective manner possible.

2015-05-06
Desai, N.N., Diwanji, H., Shah, J.S..  2014.  A temporal packet marking detection scheme against MIRA attack in MANET. Engineering and Computational Sciences (RAECS), 2014 Recent Advances in. :1-5.

Mobile Ad-hoc Network is highly susceptible towards the security attacks due to its dynamic topology, resource constraint, energy constraint operations, limited physical security and lack of infrastructure. Misleading routing attack (MIRA) in MANET intend to delay packet to its fullest in order to generate time outs at the source as packets will not reach in time. Its main objective is to generate delay and increase network overhead. It is a variation to the sinkhole attack. In this paper, we have proposed a detection scheme to detect the malicious nodes at route discovery as well as at packet transmissions. The simulation results of MIRA attack indicate that though delay is increased by 91.30% but throughput is not affected which indicates that misleading routing attack is difficult to detect. The proposed detection scheme when applied to misleading routing attack suggests a significant decrease in delay.

Junho Hong, Chen-Ching Liu, Govindarasu, M..  2014.  Integrated Anomaly Detection for Cyber Security of the Substations. Smart Grid, IEEE Transactions on. 5:1643-1653.

Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
 

2015-04-30
Junho Hong, Chen-Ching Liu, Govindarasu, M..  2014.  Integrated Anomaly Detection for Cyber Security of the Substations. Smart Grid, IEEE Transactions on. 5:1643-1653.

Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.