Visible to the public Biblio

Filters: Keyword is mobile radio  [Clear All Filters]
2020-03-04
Yi, Zhuo, Du, Xuehui, Liao, Ying, Lu, Xin.  2019.  An Access Authentication Algorithm Based on a Hierarchical Identity-Based Signature over Lattice for the Space-Ground Integrated Network. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–9.

Access authentication is a key technology to identify the legitimacy of mobile users when accessing the space-ground integrated networks (SGIN). A hierarchical identity-based signature over lattice (L-HIBS) based mobile access authentication mechanism is proposed to settle the insufficiencies of existing access authentication methods in SGIN such as high computational complexity, large authentication delay and no-resistance to quantum attack. Firstly, the idea of hierarchical identity-based cryptography is introduced according to hierarchical distribution of nodes in SGIN, and a hierarchical access authentication architecture is built. Secondly, a new L-HIBS scheme is constructed based on the Small Integer Solution (SIS) problem to support the hierarchical identity-based cryptography. Thirdly, a mobile access authentication protocol that supports bidirectional authentication and shared session key exchange is designed with the aforementioned L-HIBS scheme. Results of theoretical analysis and simulation experiments suggest that the L-HIBS scheme possesses strong unforgeability of selecting identity and adaptive selection messages under the standard security model, and the authentication protocol has smaller computational overhead and shorter private keys and shorter signature compared to given baseline protocols.

2020-02-26
Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

Wang, Jun-Wei, Jiang, Yu-Ting, Liu, Zhe.  2019.  A Trusted Routing Mechanism for Mobile Social Networks. 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). :365–369.

In recent years, mobile social networks (MSNs) have developed rapidly and their application fields are becoming more and more widespread. Due to the continuous movement of nodes in mobile social networks, the network topology is very unstable. How to ensure the credibility of network communication is a subject worth studying. In this paper, based on the characteristics of mobile social networks, the definition of trust level is introduced into the DSR routing protocol, and a trusted DSR routing mechanism (TDR) is proposed. The scheme combines the sliding window model to design the calculation method of trust level between nodes and path trust level. The nodes in the network participate in the routing process according to their trust level. When the source node receives multiple routes carried by the response, the appropriate trusted path is selected according to the path trust level. Through simulation analysis, compared with the original DSR protocol, the TDR protocol improves the performance of average delay, route cost and packet delivery fraction, and verifies the reliability and credibility of the TDR protocol.

Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.

2020-02-17
Murudkar, Chetana V., Gitlin, Richard D..  2019.  QoE-Driven Anomaly Detection in Self-Organizing Mobile Networks Using Machine Learning. 2019 Wireless Telecommunications Symposium (WTS). :1–5.
Current procedures for anomaly detection in self-organizing mobile communication networks use network-centric approaches to identify dysfunctional serving nodes. In this paper, a user-centric approach and a novel methodology for anomaly detection is proposed, where the Quality of Experience (QoE) metric is used to evaluate the end-user experience. The system model demonstrates how dysfunctional serving eNodeBs are successfully detected by implementing a parametric QoE model using machine learning for prediction of user QoE in a network scenario created by the ns-3 network simulator. This approach can play a vital role in the future ultra-dense and green mobile communication networks that are expected to be both self- organizing and self-healing.
2020-02-10
Chen, Yige, Zang, Tianning, Zhang, Yongzheng, Zhou, Yuan, Wang, Yipeng.  2019.  Rethinking Encrypted Traffic Classification: A Multi-Attribute Associated Fingerprint Approach. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–11.

With the unprecedented prevalence of mobile network applications, cryptographic protocols, such as the Secure Socket Layer/Transport Layer Security (SSL/TLS), are widely used in mobile network applications for communication security. The proven methods for encrypted video stream classification or encrypted protocol detection are unsuitable for the SSL/TLS traffic. Consequently, application-level traffic classification based networking and security services are facing severe challenges in effectiveness. Existing encrypted traffic classification methods exhibit unsatisfying accuracy for applications with similar state characteristics. In this paper, we propose a multiple-attribute-based encrypted traffic classification system named Multi-Attribute Associated Fingerprints (MAAF). We develop MAAF based on the two key insights that the DNS traces generated during the application runtime contain classification guidance information and that the handshake certificates in the encrypted flows can provide classification clues. Apart from the exploitation of key insights, MAAF employs the context of the encrypted traffic to overcome the attribute-lacking problem during the classification. Our experimental results demonstrate that MAAF achieves 98.69% accuracy on the real-world traceset that consists of 16 applications, supports the early prediction, and is robust to the scale of the training traceset. Besides, MAAF is superior to the state-of-the-art methods in terms of both accuracy and robustness.

2019-12-09
Alemán, Concepción Sánchez, Pissinou, Niki, Alemany, Sheila, Boroojeni, Kianoosh, Miller, Jerry, Ding, Ziqian.  2018.  Context-Aware Data Cleaning for Mobile Wireless Sensor Networks: A Diversified Trust Approach. 2018 International Conference on Computing, Networking and Communications (ICNC). :226–230.
In mobile wireless sensor networks (MWSN), data imprecision is a common problem. Decision making in real time applications may be greatly affected by a minor error. Even though there are many existing techniques that take advantage of the spatio-temporal characteristics exhibited in mobile environments, few measure the trustworthiness of sensor data accuracy. We propose a unique online context-aware data cleaning method that measures trustworthiness by employing an initial candidate reduction through the analysis of trust parameters used in financial markets theory. Sensors with similar trajectory behaviors are assigned trust scores estimated through the calculation of “betas” for finding the most accurate data to trust. Instead of devoting all the trust into a single candidate sensor's data to perform the cleaning, a Diversified Trust Portfolio (DTP) is generated based on the selected set of spatially autocorrelated candidate sensors. Our results show that samples cleaned by the proposed method exhibit lower percent error when compared to two well-known and effective data cleaning algorithms in tested outdoor and indoor scenarios.
2019-12-05
Bouabdellah, Mounia, Ghribi, Elias, Kaabouch, Naima.  2019.  RSS-Based Localization with Maximum Likelihood Estimation for PUE Attacker Detection in Cognitive Radio Networks. 2019 IEEE International Conference on Electro Information Technology (EIT). :1-6.

With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.

2019-06-10
Saifuddin, K. M., Ali, A. J. B., Ahmed, A. S., Alam, S. S., Ahmad, A. S..  2018.  Watchdog and Pathrater based Intrusion Detection System for MANET. 2018 4th International Conference on Electrical Engineering and Information Communication Technology (iCEEiCT). :168–173.

Mobile Ad Hoc Network (MANET) is pretty vulnerable to attacks because of its broad distribution and open nodes. Hence, an effective Intrusion Detection System (IDS) is vital in MANET to deter unwanted malicious attacks. An IDS has been proposed in this paper based on watchdog and pathrater method as well as evaluation of its performance has been presented using Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector (AODV) routing protocols with and without considering the effect of the sinkhole attack. The results obtained justify that the proposed IDS is capable of detecting suspicious activities and identifying the malicious nodes. Moreover, it replaces the fake route with a real one in the routing table in order to mitigate the security risks. The performance appraisal also suggests that the AODV protocol has a capacity of sending more packets than DSR and yields more throughput.

2019-04-01
Ledbetter, W., Glisson, W., McDonald, T., Andel, T., Grispos, G., Choo, K..  2018.  Digital Blues: An Investigation Into the Use of Bluetooth Protocols. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :498–503.
The proliferation of Bluetooth mobile device communications into all aspects of modern society raises security questions by both academicians and practitioners. This environment prompted an investigation into the real-world use of Bluetooth protocols along with an analysis of documented security attacks. The experiment discussed in this paper collected data for one week in a local coffee shop. The data collection took about an hour each day and identified 478 distinct devices. The contribution of this research is two-fold. First, it provides insight into real-world Bluetooth protocols that are being utilized by the general public. Second, it provides foundational research that is necessary for future Bluetooth penetration testing research.
2019-03-11
Raj, R. V., Balasubramanian, K., Nandhini, T..  2018.  Establishing Trust by Detecting Malicious Nodes in Delay Tolerant Network. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1385–1390.
A Network consists of many nodes among which there may be a presence of misbehavior nodes. Delay Tolerant Network (DTN) is a network where the disconnections occur frequently. Store, carry and forward method is followed in DTN. The serious threat against routing in DTN is the selfish behavior. The main intention of selfish node is to save its own energy. Detecting the selfish node in DTN is very difficult. In this paper, a probabilistic misbehavior detection scheme called MAXTRUST has been proposed. Trusted Authority (TA) has been introduced in order to detect the behavior of the nodes periodically based on the task, forwarding history and contact history evidence. After collecting all the evidences from the nodes, the TA would check the inspection node about its behavior. The actions such as punishment or compensation would be given to that particular node based on its behavior. The TA performs probabilistic checking, in order to ensure security at a reduced cost. To further improve the efficiency, dynamic probabilistic inspection has been demonstrated using game theory analysis. The simulation results show the effectiveness and efficiency of the MAXTRUST scheme.
2019-01-31
Arfaoui, A., Kribeche, A., Boudia, O. R. M., Letaifa, A. Ben, Senouci, S. M., Hamdi, M..  2018.  Context-Aware Authorization and Anonymous Authentication in Wireless Body Area Networks. 2018 IEEE International Conference on Communications (ICC). :1–7.

With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.

2019-01-16
Alamri, N., Chow, C. E., Aljaedi, A., Elgzil, A..  2018.  UFAP: Ultra-fast handoff authentication protocol for wireless mesh networks. 2018 Wireless Days (WD). :1–8.
Wireless mesh networking (WMN) is a new technology aimed to introduce the benefits of using multi-hop and multi-path to the wireless world. However, the absence of a fast and reliable handoff protocol is a major drawback especially in a technology designed to feature high mobility and scalability. We propose a fast and efficient handoff authentication protocol for wireless mesh networks. It is a token-based authentication protocol using pre-distributed parameters. We provide a performance comparison among our protocol, UFAP, and other protocols including EAP-TLS and EAP-PEAP tested in an actual setup. Performance analysis will prove that our proposed handoff authentication protocol is 250 times faster than EAP-PEAP and 500 times faster than EAP-TLS. The significant improvement in performance allows UFAP to provide seamless handoff and continuous operation even for real-time applications which can only tolerate short delays under 50 ms.
2018-05-09
Ameur, S. B., Smaoui, S., Zarai, F..  2017.  Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). :1314–1321.

NEtwork MObility (NEMO) has gained recently a lot of attention from a number of standardization and researches committees. Although NEMO-Basic Support Protocol (NEMO-BSP) seems to be suitable in the context of the Intelligent Transport Systems (ITS), it has several shortcomings, such as packets loss and lack of security, since it is a host-based mobility scheme. Therefore, in order to improve handoff performance and solve these limitations, schemes adapting Proxy MIPv6 for NEMO have been appeared. But the majorities did not deal with the case of the handover of the Visiting Mobile Nodes (VMN) located below the Mobile Router (MR). Thus, this paper proposes a Visiting Mobile Node Authentication Protocol for Proxy MIPv6-Based NEtwork MObility which ensures strong authentication between entities. To evaluate the security performance of our proposition, we have used the AVISPA/SPAN software which guarantees that our proposed protocol is a safe scheme.

2018-03-19
Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  A Trust-Based Intrusion Detection System for Mobile RPL Based Networks. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :735–742.

Successful deployment of Low power and Lossy Networks (LLNs) requires self-organising, self-configuring, security, and mobility support. However, these characteristics can be exploited to perform security attacks against the Routing Protocol for Low-Power and Lossy Networks (RPL). In this paper, we address the lack of strong identity and security mechanisms in RPL. We first demonstrate by simulation the impact of Sybil-Mobile attack, namely SybM, on RPL with respect to control overhead, packet delivery and energy consumption. Then, we introduce a new Intrusion Detection System (IDS) scheme for RPL, named Trust-based IDS (T-IDS). T-IDS is a distributed, cooperative and hierarchical trust-based IDS, which can detect novel intrusions by comparing network behavior deviations. In T-IDS, each node is considered as monitoring node and collaborates with his peers to detect intrusions and report them to a 6LoWPAN Border Router (6BR). In our solution, we introduced a new timer and minor extensions to RPL messages format to deal with mobility, identity and multicast issues. In addition, each node is equipped with a Trusted Platform Module co-processor to handle identification and off-load security related computation and storage.

2018-02-28
Zhang, N., Sirbu, M. A., Peha, J. M..  2017.  A comparison of migration and multihoming support in IPv6 and XIA. 2017 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.

2018-02-14
Ayed, H. Kaffel-Ben, Boujezza, H., Riabi, I..  2017.  An IDMS approach towards privacy and new requirements in IoT. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :429–434.
Identities are known as the most sensitive information. With the increasing number of connected objects and identities (a connected object may have one or many identities), the computing and communication capabilities improved to manage these connected devices and meet the needs of this progress. Therefore, new IoT Identity Management System (IDMS) requirements have been introduced. In this work, we suggest an IDMS approach to protect private information and ensures domain change in IoT for mobile clients using a personal authentication device. Firstly, we present basic concepts, existing requirements and limits of related works. We also propose new requirements and show our motivations. Next, we describe our proposal. Finally, we give our security approach validation, perspectives, and some concluding remarks.
2017-03-07
Chuan, T. H., Zhang, J., Maode, M., Chong, P. H. Joo, Labiod, H..  2015.  Secure Public Key Regime (SPKR) in vehicular networks. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Public Key Regime (PKR) was proposed as an alternative to certificate based PKI in securing Vehicular Networks (VNs). It eliminates the need for vehicles to append their certificate for verification because the Road Side Units (RSUs) serve as Delegated Trusted Authorities (DTAs) to issue up-to-date public keys to vehicles for communications. If a vehicle's private/public key needs to be revoked, the root TA performs real time updates and disseminates the changes to these RSUs in the network. Therefore, PKR does not need to maintain a huge Certificate Revocation List (CRL), avoids complex certificate verification process and minimizes the high latency. However, the PKR scheme is vulnerable to Denial of Service (DoS) and collusion attacks. In this paper, we study these attacks and propose a pre-authentication mechanism to secure the PKR scheme. Our new scheme is called the Secure Public Key Regime (SPKR). It is based on the Schnorr signature scheme that requires vehicles to expend some amount of CPU resources before RSUs issue the requested public keys to them. This helps to alleviate the risk of DoS attacks. Furthermore, our scheme is secure against collusion attacks. Through numerical analysis, we show that SPKR has a lower authentication delay compared with the Elliptic Curve Digital Signature (ECDSA) scheme and other ECDSA based counterparts.

Amin, R., Islam, S. K. H., Biswas, G. P., Khan, M. K..  2015.  An efficient remote mutual authentication scheme using smart mobile phone over insecure networks. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

To establish a secure connection between a mobile user and a remote server, this paper presents a session key agreement scheme through remote mutual authentication protocol by using mobile application software(MAS). We analyzed the security of our protocol informally, which confirms that the protocol is secure against all the relevant security attacks including off-line identity-password guessing attacks, user-server impersonation attacks, and insider attack. In addition, the widely accepted simulator tool AVISPA simulates the proposed protocol and confirms that the protocol is SAFE under the OFMC and CL-AtSe back-ends. Our protocol not only provide strong security against the relevant attacks, but it also achieves proper mutual authentication, user anonymity, known key secrecy and efficient password change operation. The performance comparison is also performed, which ensures that the protocol is efficient in terms of computation and communication costs.

2017-02-14
S. Majumdar, A. Maiti, A. Nath.  2015.  "New Secured Steganography Algorithm Using Encrypted Secret Message inside QRTM Code: System Implemented in Android Phone". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1130-1134.

Steganography is a method of hiding information, whereas the goal of cryptography is to make data unreadable. Both of these methodologies have their own advantages and disadvantages. Encrypted messages are easily detectable. If someone is spying on communication channel for encrypted message, he/she can easily identify the encrypted messages. Encryption may draw unnecessary attention to the transferred messages. This may lead to cryptanalysis of the encrypted message if the spy tries to know the message. If the encryption technique is not strong enough, the message may be deciphered. In contrast, Steganography tries to hide the data from third party by smartly embedding the data to some other file which is not at all related to the message. Here care is to be taken to minimize the modification of the container file in the process of embedding data. But the disadvantage of steganography is that it is not as secure as cryptography. In the present method the authors have introduced three-step security. Firstly the secret message is encrypted using bit level columnar transposition method introduced by Nath et al and after that the encrypted message is embedded in some image file along with its size. Finally the modified image is encoded into a QR Code TM. The entire method has also been implemented for the Android mobile environment. This method may be used to transfer confidential message through Android mobile phone.

2015-05-06
Gang Han, Haibo Zeng, Yaping Li, Wenhua Dou.  2014.  SAFE: Security-Aware FlexRay Scheduling Engine. Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. :1-4.

In this paper, we propose SAFE (Security Aware FlexRay scheduling Engine), to provide a problem definition and a design framework for FlexRay static segment schedule to address the new challenge on security. From a high level specification of the application, the architecture and communication middleware are synthesized to satisfy security requirements, in addition to extensibility, costs, and end-to-end latencies. The proposed design process is applied to two industrial case studies consisting of a set of active safety functions and an X-by-wire system respectively.

Wei Peng, Feng Li, Xukai Zou, Jie Wu.  2014.  Behavioral Malware Detection in Delay Tolerant Networks. Parallel and Distributed Systems, IEEE Transactions on. 25:53-63.

The delay-tolerant-network (DTN) model is becoming a viable communication alternative to the traditional infrastructural model for modern mobile consumer electronics equipped with short-range communication technologies such as Bluetooth, NFC, and Wi-Fi Direct. Proximity malware is a class of malware that exploits the opportunistic contacts and distributed nature of DTNs for propagation. Behavioral characterization of malware is an effective alternative to pattern matching in detecting malware, especially when dealing with polymorphic or obfuscated malware. In this paper, we first propose a general behavioral characterization of proximity malware which based on naive Bayesian model, which has been successfully applied in non-DTN settings such as filtering email spams and detecting botnets. We identify two unique challenges for extending Bayesian malware detection to DTNs ("insufficient evidence versus evidence collection risk" and "filtering false evidence sequentially and distributedly"), and propose a simple yet effective method, look ahead, to address the challenges. Furthermore, we propose two extensions to look ahead, dogmatic filtering, and adaptive look ahead, to address the challenge of "malicious nodes sharing false evidence." Real mobile network traces are used to verify the effectiveness of the proposed methods.
 

2015-05-04
Ding Wang, Ping Wang, Jing Liu.  2014.  Improved privacy-preserving authentication scheme for roaming service in mobile networks. Wireless Communications and Networking Conference (WCNC), 2014 IEEE. :3136-3141.

User authentication is an important security mechanism that allows mobile users to be granted access to roaming service offered by the foreign agent with assistance of the home agent in mobile networks. While security-related issues have been well studied, how to preserve user privacy in this type of protocols still remains an open problem. In this paper, we revisit the privacy-preserving two-factor authentication scheme presented by Li et al. at WCNC 2013. We show that, despite being armed with a formal security proof, this scheme actually cannot achieve the claimed feature of user anonymity and is insecure against offline password guessing attacks, and thus, it is not recommended for practical applications. Then, we figure out how to fix these identified drawbacks, and suggest an enhanced scheme with better security and reasonable efficiency. Further, we conjecture that under the non-tamper-resistant assumption of the smart cards, only symmetric-key techniques are intrinsically insufficient to attain user anonymity.

2015-04-30
Salman, A., Elhajj, I.H., Chehab, A., Kayssi, A..  2014.  DAIDS: An Architecture for Modular Mobile IDS. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :328-333.

The popularity of mobile devices and the enormous number of third party mobile applications in the market have naturally lead to several vulnerabilities being identified and abused. This is coupled with the immaturity of intrusion detection system (IDS) technology targeting mobile devices. In this paper we propose a modular host-based IDS framework for mobile devices that uses behavior analysis to profile applications on the Android platform. Anomaly detection can then be used to categorize malicious behavior and alert users. The proposed system accommodates different detection algorithms, and is being tested at a major telecom operator in North America. This paper highlights the architecture, findings, and lessons learned.