Visible to the public Biblio

Found 273 results

Filters: Keyword is Databases  [Clear All Filters]
2021-05-05
Singh, Sukhpreet, Jagdev, Gagandeep.  2020.  Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :158—163.

The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.

Jana, Angshuman, Maity, Dipendu.  2020.  Code-based Analysis Approach to Detect and Prevent SQL Injection Attacks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

Now-a-days web applications are everywhere. Usually these applications are developed by database program which are often written in popular host programming languages such as C, C++, C\#, Java, etc., with embedded Structured Query Language (SQL). These applications are used to access and process crucial data with the help of Database Management System (DBMS). Preserving the sensitive data from any kind of attacks is one of the prime factors that needs to be maintained by the web applications. The SQL injection attacks is one of the important security threat for the web applications. In this paper, we propose a code-based analysis approach to automatically detect and prevent the possible SQL Injection Attacks (SQLIA) in a query before submitting it to the underlying database. This approach analyses the user input by assigning a complex number to each input element. It has two part (i) input clustering and (ii) safe (non-malicious) input identification. We provide a details discussion of the proposal w.r.t the literature on security and execution overhead point of view.

2021-05-03
Zalasiński, Marcin, Cpałka, Krzysztof, Łapa, Krystian.  2020.  An interpretable fuzzy system in the on-line signature scalable verification. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–9.
This paper proposes new original solutions for the use of interpretable flexible fuzzy systems for identity verification based on an on-line signature. Such solutions must be scalable because the verification of the identity of each user must be carried out independently of one another. In addition, a large number of system users limit the possibilities of iterative system learning. An important issue is the ability to interpret the system rules because it explains how the similarity of test signatures to reference signature templates is assessed. In this paper, we propose an approach that meets all of the above requirements and works effectively for the on-line signatures' database used in the simulations.
2021-04-08
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..  2020.  Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
Yaseen, Q., Panda, B..  2012.  Tackling Insider Threat in Cloud Relational Databases. 2012 IEEE Fifth International Conference on Utility and Cloud Computing. :215—218.
Cloud security is one of the major issues that worry individuals and organizations about cloud computing. Therefore, defending cloud systems against attacks such asinsiders' attacks has become a key demand. This paper investigates insider threat in cloud relational database systems(cloud RDMS). It discusses some vulnerabilities in cloud computing structures that may enable insiders to launch attacks, and shows how load balancing across multiple availability zones may facilitate insider threat. To prevent such a threat, the paper suggests three models, which are Peer-to-Peer model, Centralized model and Mobile-Knowledgebase model, and addresses the conditions under which they work well.
Claycomb, W. R., Huth, C. L., Phillips, B., Flynn, L., McIntire, D..  2013.  Identifying indicators of insider threats: Insider IT sabotage. 2013 47th International Carnahan Conference on Security Technology (ICCST). :1—5.
This paper describes results of a study seeking to identify observable events related to insider sabotage. We collected information from actual insider threat cases, created chronological timelines of the incidents, identified key points in each timeline such as when attack planning began, measured the time between key events, and looked for specific observable events or patterns that insiders held in common that may indicate insider sabotage is imminent or likely. Such indicators could be used by security experts to potentially identify malicious activity at or before the time of attack. Our process included critical steps such as identifying the point of damage to the organization as well as any malicious events prior to zero hour that enabled the attack but did not immediately cause harm. We found that nearly 71% of the cases we studied had either no observable malicious action prior to attack, or had one that occurred less than one day prior to attack. Most of the events observed prior to attack were behavioral, not technical, especially those occurring earlier in the case timelines. Of the observed technical events prior to attack, nearly one third involved installation of software onto the victim organizations IT systems.
2021-03-29
Normatov, S., Rakhmatullaev, M..  2020.  Expert system with Fuzzy logic for protecting Scientific Information Resources. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.

Analysis of the state of development of research on the protection of valuable scientific and educational databases, library resources, information centers, publishers show the importance of information security, especially in corporate information networks and systems for data exchange. Corporate library networks include dozens and even hundreds of libraries for active information exchange, and they (libraries) are equipped with information security tools to varying degrees. The purpose of the research is to create effective methods and tools to protect the databases of the scientific and educational resources from unauthorized access in libraries and library networks using fuzzy logic methods.

Xu, X., Ruan, Z., Yang, L..  2020.  Facial Expression Recognition Based on Graph Neural Network. 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). :211—214.

Facial expressions are one of the most powerful, natural and immediate means for human being to present their emotions and intensions. In this paper, we present a novel method for fully automatic facial expression recognition. The facial landmarks are detected for characterizing facial expressions. A graph convolutional neural network is proposed for feature extraction and facial expression recognition classification. The experiments were performed on the three facial expression databases. The result shows that the proposed FER method can achieve good recognition accuracy up to 95.85% using the proposed method.

Mar, Z., Oo, K. K..  2020.  An Improvement of Apriori Mining Algorithm using Linked List Based Hash Table. 2020 International Conference on Advanced Information Technologies (ICAIT). :165–169.
Today, the huge amount of data was using in organizations around the world. This huge amount of data needs to process so that we can acquire useful information. Consequently, a number of industry enterprises discovered great information from shopper purchases found in any respect times. In data mining, the most important algorithms for find frequent item sets from large database is Apriori algorithm and discover the knowledge using the association rule. Apriori algorithm was wasted times for scanning the whole database and searching the frequent item sets and inefficient of memory requirement when large numbers of transactions are in consideration. The improved Apriori algorithm is adding and calculating third threshold may increase the overhead. So, in the aims of proposed research, Improved Apriori algorithm with LinkedList and hash tabled is used to mine frequent item sets from the transaction large amount of database. This method includes database is scanning with Improved Apriori algorithm and frequent 1-item sets counts with using the hash table. Then, in the linked list saved the next frequent item sets and scanning the database. The hash table used to produce the frequent 2-item sets Therefore, the database scans the only two times and necessary less processing time and memory space.
2021-03-22
Yogita, Gupta, N. Kumar.  2020.  Integrity Auditing with Attribute based ECMRSA Algorithm for Cloud Data Outsourcing. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1284–1289.
Cloud computing is a vast area within which large amounts of data are exchanged through cloud services and has fully grown with its on-demand technology. Due to these versatile cloud services, sensitive data will be stored on cloud storage servers and it is also used to dynamically control a number of problems: security, privacy, data privacy, data sharing, and integrity across cloud servers. Moreover, the legitimacy and control of data access should be maintained in this extended environment. So, one of the most important concepts of cryptographic techniques in cloud computing environment is Attribute Based Encryption (ABE). In this research work, data auditing or integrity checking is considered as an area of concern for securing th cloud storage. In data auditing approach, an auditor inspects and verifies the data file integrity without having any knowledge about the content of file and sends the verification report to the data owner. In this research, Elliptical Curve Modified RSA (ECMRSA) is proposed along with Modified MD5 algorithm which is used for attribute-based cloud data integrity verification, in which data user or owner uploads their encrypted data files at cloud data server and send the auditing request to the Third-Party Auditor (TPA) for verification of their data files. The Third-Party Auditor (TPA) challenges the data server for ensuring the integrity of data files on behalf of the data owners. After verification of integrity of data file auditor sends the audit report to the owner. The proposed algorithm integrates the auditing scheme with public key encryption with homomorphic algorithm which generates digital signature or hash values of data files on encrypted files. The result analysis is performed on time complexity by evaluating encryption time, GenProof time and VerifyProof Time and achieved improvement in resolving time complexity as compared to existing techiques.
2021-03-17
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

2021-03-15
Lin, P., Jinshuang, W., Ping, C., Lanjuan, Y..  2020.  SQL Injection Attack and Detection Based on GreenSQL Pattern Input Whitelist. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :187—190.

With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.

2021-03-09
Idhom, M., Wahanani, H. E., Fauzi, A..  2020.  Network Security System on Multiple Servers Against Brute Force Attacks. 2020 6th Information Technology International Seminar (ITIS). :258—262.

Network security is critical to be able to maintain the information, especially on servers that store a lot of information; several types of attacks can occur on servers, including brute force and DDoS attacks; in the case study in this research, there are four servers used so that a network security system that can synchronize with each other so that when one server detects an attack, another server can take precautions before the same attack occurs on another server.fail2ban is a network security tool that uses the IDPS (Intrusion Detection and Prevention System) method which is an extension of the IDS (Intrusion Detection System) combined with IP tables so that it can detect and prevent suspicious activities on a network, fail2ban automatically default can only run on one server without being able to synchronize on other servers. With a network security system that can run on multiple servers, the attack prevention process can be done faster because when one server detects an attack, another server will take precautions by retrieving the information that has entered the collector database synchronizing all servers other servers can prevent attacks before an attack occurs on that server.

2021-02-23
Krohmer, D., Schotten, H. D..  2020.  Decentralized Identifier Distribution for Moving Target Defense and Beyond. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

In this work, we propose a novel approach for decentralized identifier distribution and synchronization in networks. The protocol generates network entity identifiers composed of timestamps and cryptographically secure random values with a significant reduction of collision probability. The distribution is inspired by Unique Universal Identifiers and Timestamp-based Concurrency Control algorithms originating from database applications. We defined fundamental requirements for the distribution, including: uniqueness, accuracy of distribution, optimal timing behavior, scalability, small impact on network load for different operation modes and overall compliance to common network security objectives. An implementation of the proposed approach is evaluated and the results are presented. Originally designed for a domain of proactive defense strategies known as Moving Target Defense, the general architecture of the protocol enables arbitrary applications where identifier distributions in networks have to be decentralized, rapid and secure.

2021-02-22
Haile, J., Havens, S..  2020.  Identifying Ubiquitious Third-Party Libraries in Compiled Executables Using Annotated and Translated Disassembled Code with Supervised Machine Learning. 2020 IEEE Security and Privacy Workshops (SPW). :157–162.
The size and complexity of the software ecosystem is a major challenge for vendors, asset owners and cybersecurity professionals who need to understand the security posture of these systems. Annotated and Translated Disassembled Code is a graph based datastore designed to organize firmware and software analysis data across builds, packages and systems, providing a highly scalable platform enabling automated binary software analysis tasks including corpora construction and storage for machine learning. This paper describes an approach for the identification of ubiquitous third-party libraries in firmware and software using Annotated and Translated Disassembled Code and supervised machine learning. Annotated and Translated Disassembled Code provide matched libraries, function names and addresses of previously unidentified code in software as it is being automatically analyzed. This data can be ingested by other software analysis tools to improve accuracy and save time. Defenders can add the identified libraries to their vulnerability searches and add effective detection and mitigation into their operating environment.
Kornaropoulos, E. M., Papamanthou, C., Tamassia, R..  2020.  The State of the Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribution. 2020 IEEE Symposium on Security and Privacy (SP). :1223–1240.
Recent foundational work on leakage-abuse attacks on encrypted databases has broadened our understanding of what an adversary can accomplish with a standard leakage profile. Nevertheless, all known value reconstruction attacks succeed under strong assumptions that may not hold in the real world. The most prevalent assumption is that queries are issued uniformly at random by the client. We present the first value reconstruction attacks that succeed without any knowledge about the query or data distribution. Our approach uses the search-pattern leakage, which exists in all known structured encryption schemes but has not been fully exploited so far. At the core of our method lies a support size estimator, a technique that utilizes the repetition of search tokens with the same response to estimate distances between encrypted values without any assumptions about the underlying distribution. We develop distribution-agnostic reconstruction attacks for both range queries and k-nearest-neighbor (k-NN) queries based on information extracted from the search-pattern leakage. Our new range attack follows a different algorithmic approach than state-of-the-art attacks, which are fine-tuned to succeed under the uniformly distributed queries. Instead, we reconstruct plaintext values under a variety of skewed query distributions and even outperform the accuracy of previous approaches under the uniform query distribution. Our new k-NN attack succeeds with far fewer samples than previous attacks and scales to much larger values of k. We demonstrate the effectiveness of our attacks by experimentally testing them on a wide range of query distributions and database densities, both unknown to the adversary.
Bhagat, V., J, B. R..  2020.  Natural Language Processing on Diverse Data Layers Through Microservice Architecture. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1–6.
With the rapid growth in Natural Language Processing (NLP), all types of industries find a need for analyzing a massive amount of data. Sentiment analysis is becoming a more exciting area for the businessmen and researchers in Text mining & NLP. This process includes the calculation of various sentiments with the help of text mining. Supplementary to this, the world is connected through Information Technology and, businesses are moving toward the next step of the development to make their system more intelligent. Microservices have fulfilled the need for development platforms which help the developers to use various development tools (Languages and applications) efficiently. With the consideration of data analysis for business growth, data security becomes a major concern in front of developers. This paper gives a solution to keep the data secured by providing required access to data scientists without disturbing the base system software. This paper has discussed data storage and exchange policies of microservices through common JavaScript Object Notation (JSON) response which performs the sentiment analysis of customer's data fetched from various microservices through secured APIs.
2021-02-16
Wu, J. M.-T., Srivastava, G., Pirouz, M., Lin, J. C.-W..  2020.  A GA-based Data Sanitization for Hiding Sensitive Information with Multi-Thresholds Constraint. 2020 International Conference on Pervasive Artificial Intelligence (ICPAI). :29—34.
In this work, we propose a new concept of multiple support thresholds to sanitize the database for specific sensitive itemsets. The proposed method assigns a stricter threshold to the sensitive itemset for data sanitization. Furthermore, a genetic-algorithm (GA)-based model is involved in the designed algorithm to minimize side effects. In our experimental results, the GA-based PPDM approach is compared with traditional compact GA-based model and results clearly showed that our proposed method can obtain better performance with less computational cost.
2021-02-10
Anagandula, K., Zavarsky, P..  2020.  An Analysis of Effectiveness of Black-Box Web Application Scanners in Detection of Stored SQL Injection and Stored XSS Vulnerabilities. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :40—48.

Black-box web application scanners are used to detect vulnerabilities in the web application without any knowledge of the source code. Recent research had shown their poor performance in detecting stored Cross-Site Scripting (XSS) and stored SQL Injection (SQLI). The detection efficiency of four black-box scanners on two testbeds, Wackopicko and Custom testbed Scanit (obtained from [5]), have been analyzed in this paper. The analysis showed that the scanners need to be improved for better detection of multi-step stored XSS and stored SQLI. This study involves the interaction between the selected scanners and the web application to measure their efficiency of inserting proper attack vectors in appropriate fields. The results of this research paper indicate that there is not much difference in terms of performance between open-source and commercial black-box scanners used in this research. However, it may depend on the policies and trust issues of the companies using them according to their needs. Some of the possible recommendations are provided to improve the detection rate of stored SQLI and stored XSS vulnerabilities in this paper. The study concludes that the state-of-the-art of automated black-box web application scanners in 2020 needs to be improved to detect stored XSS and stored SQLI more effectively.

2021-02-01
Bai, Y., Guo, Y., Wei, J., Lu, L., Wang, R., Wang, Y..  2020.  Fake Generated Painting Detection Via Frequency Analysis. 2020 IEEE International Conference on Image Processing (ICIP). :1256–1260.
With the development of deep neural networks, digital fake paintings can be generated by various style transfer algorithms. To detect the fake generated paintings, we analyze the fake generated and real paintings in Fourier frequency domain and observe statistical differences and artifacts. Based on our observations, we propose Fake Generated Painting Detection via Frequency Analysis (FGPD-FA) by extracting three types of features in frequency domain. Besides, we also propose a digital fake painting detection database for assessing the proposed method. Experimental results demonstrate the excellence of the proposed method in different testing conditions.
Li, R., Ishimaki, Y., Yamana, H..  2020.  Privacy Preserving Calculation in Cloud using Fully Homomorphic Encryption with Table Lookup. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :315–322.
To protect data in cloud servers, fully homomorphic encryption (FHE) is an effective solution. In addition to encrypting data, FHE allows a third party to evaluate arithmetic circuits (i.e., computations) over encrypted data without decrypting it, guaranteeing protection even during the calculation. However, FHE supports only addition and multiplication. Functions that cannot be directly represented by additions or multiplications cannot be evaluated with FHE. A naïve implementation of such arithmetic operations with FHE is a bit-wise operation that encrypts numerical data as a binary string. This incurs huge computation time and storage costs, however. To overcome this limitation, we propose an efficient protocol to evaluate multi-input functions with FHE using a lookup table. We extend our previous work, which evaluates a single-integer input function, such as f(x). Our extended protocol can handle multi-input functions, such as f(x,y). Thus, we propose a new method of constructing lookup tables that can evaluate multi-input functions to handle general functions. We adopt integer encoding rather than bit-wise encoding to speed up the evaluations. By adopting both permutation operations and a private information retrieval scheme, we guarantee that no information from the underlying plaintext is leaked between two parties: a cloud computation server and a decryptor. Our experimental results show that the runtime of our protocol for a two-input function is approximately 13 minutes, when there are 8,192 input elements in the lookup table. By adopting a multi-threading technique, the runtime can be further reduced to approximately three minutes with eight threads. Our work is more practical than a previously proposed bit-wise implementation, which requires 60 minutes to evaluate a single-input function.
2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
Kabir, N., Kamal, S..  2020.  Secure Mobile Sensor Data Transfer using Asymmetric Cryptography Algorithms. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Mobile sensors are playing a vital role in various applications of a normal day life. Key size in securing data is an important issue to highlight in mobile sensor data transfer between a smart device and a data storage component. Such key size may affect memory storage and processing power of a mobile device. Therefore, we proposed a secure mobile sensor data transfer protocol called secure sensor protocol (SSP). SSP is based on Elliptic Curve Cryptography (ECC), which generates small size key in contrast to conventional asymmetric algorithms like RSA and Diffie Hellman. SSP receive values from light sensor and magnetic flux meter of a smart device. SSP encrypts mobile sensor data using ECC and afterwards it stores cipher information in MySQL database to receive remote data access. We compared the performance of the ECC with other existing asymmetric cryptography algorithms in terms of secure mobile sensor data transfer based on data encryption and decryption time, key size and encoded data size. In-addition, SSP shows better results than other cryptography algorithms in terms of secure mobile sensor data transfer.
Abusukhon, A., AlZu’bi, S..  2020.  New Direction of Cryptography: A Review on Text-to-Image Encryption Algorithms Based on RGB Color Value. 2020 Seventh International Conference on Software Defined Systems (SDS). :235–239.
Data encryption techniques are important for answering the question: How secure is the Internet for sending sensitive data. Keeping data secure while they are sent through the global network is a difficult task. This is because many hackers are fishing these data in order to get some benefits. The researchers have developed various types of encryption algorithms to protect data from attackers. These algorithms are mainly classified into two categories namely symmetric and asymmetric encryption algorithms. This survey sheds light on the recent work carried out on encrypting a text into an image based on the RGB color value and held a comparison between them based on various factors evolved from the literature.
Rizki, R. P., Hamidi, E. A. Z., Kamelia, L., Sururie, R. W..  2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.