Visible to the public Biblio

Filters: Keyword is power system stability  [Clear All Filters]
2021-10-12
Sethi, Kamalakanta, Pradhan, Ankit, Bera, Padmalochan.  2020.  Attribute-Based Data Security with Obfuscated Access Policy for Smart Grid Applications. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :503–506.
Smart grid employs intelligent transmission and distribution networks for effective and reliable delivery of electricity. It uses fine-grained electrical measurements to attain optimized reliability and stability by sharing these measurements among different entities of energy management systems of the grid. There are many stakeholders like users, phasor measurement units (PMU), and other entities, with changing requirements involved in the sharing of the data. Therefore, data security plays a vital role in the correct functioning of a power grid network. In this paper, we propose an attribute-based encryption (ABE) for secure data sharing in Smart Grid architectures as ABE enables efficient and secure access control. Also, the access policy is obfuscated to preserve privacy. We use Linear Secret Sharing (LSS) Scheme for supporting any monotone access structures, thereby enhancing the expressiveness of access policies. Finally, we also analyze the security, access policy privacy and collusion resistance properties along with efficiency analysis of our cryptosystem.
2021-10-04
Benanti, F., Sanseverino, E. Riva, Sciumè, G., Zizzo, G..  2020.  A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
2021-09-30
Hu, Zenghui, Mu, Xiaowu.  2020.  Event-triggered Control for Stochastic Networked Control Systems under DoS Attacks. 2020 39th Chinese Control Conference (CCC). :4389–4394.
This paper investigates the event-triggered control (ETC) problem for stochastic networked control systems (NCSs) with exogenous disturbances and Denial-of-Service (DoS) attacks. The ETC strategy is proposed to reduce the utilization of network resource while defending the DoS attacks. Based on the introduced ETC strategy, sufficient conditions, which rely on the frequency and duration properties of DoS attacks, are obtained to achieve the stochastic input-to-state stability and Zeno-freeness of the ETC stochastic NCSs. An example of air vehicle system is given to explain the effectiveness of proposed ETC strategy.
2021-09-16
Singh, Vivek Kumar, Govindarasu, Manimaran.  2020.  A Novel Architecture for Attack-Resilient Wide-Area Protection and Control System in Smart Grid. 2020 Resilience Week (RWS). :41–47.
Wide-area protection and control (WAPAC) systems are widely applied in the energy management system (EMS) that rely on a wide-area communication network to maintain system stability, security, and reliability. As technology and grid infrastructure evolve to develop more advanced WAPAC applications, however, so do the attack surfaces in the grid infrastructure. This paper presents an attack-resilient system (ARS) for the WAPAC cybersecurity by seamlessly integrating the network intrusion detection system (NIDS) with intrusion mitigation and prevention system (IMPS). In particular, the proposed NIDS utilizes signature and behavior-based rules to detect attack reconnaissance, communication failure, and data integrity attacks. Further, the proposed IMPS applies state transition-based mitigation and prevention strategies to quickly restore the normal grid operation after cyberattacks. As a proof of concept, we validate the proposed generic architecture of ARS by performing experimental case study for wide-area protection scheme (WAPS), one of the critical WAPAC applications, and evaluate the proposed NIDS and IMPS components of ARS in a cyber-physical testbed environment. Our experimental results reveal a promising performance in detecting and mitigating different classes of cyberattacks while supporting an alert visualization dashboard to provide an accurate situational awareness in real-time.
2021-05-13
Liu, Xinghua, Bai, Dandan, Jiang, Rui.  2020.  Load Frequency Control of Multi-area Power Systems under Deception Attacks*. 2020 Chinese Automation Congress (CAC). :3851–3856.
This paper investigated the sliding mode load frequency control (LFC) for an multi-area power system (MPS) under deception attacks (DA). A Luenberger observer is designed to obtain the state estimate of MPS. By using the Lyapunov-Krasovskii method, a sliding mode surface (SMS) is designed to ensure the stability. Then the accessibility analysis ensures that the trajectory of the MPS can reach the specified SMS. Finally, the serviceability of the method is explained by providing a case study.
2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2021-03-15
Shahkar, S., Khorasani, K..  2020.  A Resilient Control Against Time-Delay Switch and Denial of Service Cyber Attacks on Load Frequency Control of Distributed Power Systems. 2020 IEEE Conference on Control Technology and Applications (CCTA). :718—725.

A time-delay switch (TDS) cyber attack is a deliberate attempt by malicious adversaries aiming at destabilizing a power system by impeding the communication signals to/from the centralized controller from/to the network sensors and generating stations that participate in the load frequency control (LFC). A TDS cyber attack can be targeting the sensing loops (transmitting network measurements to the centralized controller) or the control signals dispatched from the centralized controller to the governor valves of the generating stations. A resilient TDS control strategy is proposed and developed in this work that thwarts network instabilities that are caused by delays in the sensing loops, and control commands, and guarantees normal operation of the LFC mechanism. This will be achieved by augmenting the telemetered control commands with locally generated feedback control laws (i.e., “decentralized” control commands) taking measurements that are available and accessible at the power generating stations (locally) independent from all the telemetered signals to/from the centralized controller. Our objective is to devise a controller that is capable of circumventing all types of TDS and DoS (Denial of Service) cyber attacks as well as a broad class of False Data Injection (FDI) cyber attacks.

2021-02-16
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
2020-12-11
Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.

Ma, X., Sun, X., Cheng, L., Guo, X., Liu, X., Wang, Z..  2019.  Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
2020-12-02
Scheffer, V., Ipach, H., Becker, C..  2019.  Distribution Grid State Assessment for Control Reserve Provision Using Boundary Load Flow. 2019 IEEE Milan PowerTech. :1—6.

With the increasing expansion of wind and solar power plants, these technologies will also have to contribute control reserve to guarantee frequency stability within the next couple of years. In order to maintain the security of supply at the same level in the future, it must be ensured that wind and solar power plants are able to feed in electricity into the distribution grid without bottlenecks when activated. The present work presents a grid state assessment, which takes into account the special features of the control reserve supply. The identification of a future grid state, which is necessary for an ex ante evaluation, poses the challenge of forecasting loads. The Boundary Load Flow method takes load uncertainties into account and is used to estimate a possible interval for all grid parameters. Grid congestions can thus be detected preventively and suppliers of control reserve can be approved or excluded. A validation in combination with an exemplary application shows the feasibility of the overall methodology.

2020-11-20
Yogarathinam, A., Chaudhuri, N. R..  2019.  Wide-Area Damping Control Using Multiple DFIG-Based Wind Farms Under Stochastic Data Packet Dropouts. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—1.
Data dropouts in communication network can have a significant impact on wide-area oscillation damping control of a smart power grid with large-scale deployment of distributed and networked phasor measurement units and wind energy resources. Remote feedback signals sent through communication channels encounter data dropout, which is represented by the Gilbert-Elliott model. An observer-driven reduced copy (ORC) approach is presented, which uses the knowledge of the nominal system dynamics during data dropouts to improve the damping performance where conventional feedback would suffer. An expression for the expectation of the bound on the error norm between the actual and the estimated states relating uncertainties in the cyber system due to data dropout and physical system due to change in operating conditions is also derived. The key contribution comes from the analytical derivation of the impact of coupling between the cyber and the physical layer on ORC performance. Monte Carlo simulation is performed to calculate the dispersion of the error bound. Nonlinear time-domain simulations demonstrate that the ORC produces significantly better performance compared to conventional feedback under higher data drop situations.
2020-09-28
Patsonakis, Christos, Terzi, Sofia, Moschos, Ioannis, Ioannidis, Dimosthenis, Votis, Konstantinos, Tzovaras, Dimitrios.  2019.  Permissioned Blockchains and Virtual Nodes for Reinforcing Trust Between Aggregators and Prosumers in Energy Demand Response Scenarios. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The advancement and penetration of distributed energy resources (DERs) and renewable energy sources (RES) are transforming legacy energy systems in an attempt to reduce carbon emissions and energy waste. Demand Response (DR) has been identified as a key enabler of integrating these, and other, Smart Grid technologies, while, simultaneously, ensuring grid stability and secure energy supply. The massive deployment of smart meters, IoT devices and DERs dictate the need to move to decentralized, or even localized, DR schemes in the face of the increased scale and complexity of monitoring and coordinating the actors and devices in modern smart grids. Furthermore, there is an inherent need to guarantee interoperability, due to the vast number of, e.g., hardware and software stakeholders, and, more importantly, promote trust and incentivize the participation of customers in DR schemes, if they are to be successfully deployed.In this work, we illustrate the design of an energy system that addresses all of the roadblocks that hinder the large scale deployment of DR services. Our DR framework incorporates modern Smart Grid technologies, such as fog-enabled and IoT devices, DERs and RES to, among others, automate asset handling and various time-consuming workflows. To guarantee interoperability, our system employs OpenADR, which standardizes the communication of DR signals among energy stakeholders. Our approach acknowledges the need for decentralization and employs blockchains and smart contracts to deliver a secure, privacy-preserving, tamper-resistant, auditable and reliable DR framework. Blockchains provide the infrastructure to design innovative DR schemes and incentivize active consumer participation as their aforementioned properties promote transparency and trust. In addition, we harness the power of smart contracts which allows us to design and implement fully automated contractual agreements both among involved stakeholders, as well as on a machine-to-machine basis. Smart contracts are digital agents that "live" in the blockchain and can encode, execute and enforce arbitrary agreements. To illustrate the potential and effectiveness of our smart contract-based DR framework, we present a case study that describes the exchange of DR signals and the autonomous instantiation of smart contracts among involved participants to mediate and monitor transactions, enforce contractual clauses, regulate energy supply and handle payments/penalties.
2020-09-14
Liang, Xiao, Ma, Lixin, An, Ningyu, Jiang, Dongxiao, Li, Chenggang, Chen, Xiaona, Zhao, Lijiao.  2019.  Ontology Based Security Risk Model for Power Terminal Equipment. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:212–216.
IoT based technology are drastically accelerating the informationization development of the power grid system of China that consists of a huge number of power terminal devices interconnected by the network of electric power IoT. However, the networked power terminal equipment oriented cyberspace security has continually become a challenging problem as network attack is continually varying and evolving. In this paper, we concentrate on the security risk of power terminal equipment and their vulnerability based on ATP attack detection and defense. We first analyze the attack mechanism of APT security attack based on power terminal equipment. Based on the analysis of the security and attack of power IoT terminal device, an ontology-based knowledge representation method of power terminal device and its vulnerability is proposed.
2020-08-28
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.  2019.  Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.

The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.

2020-08-24
Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
2020-08-13
Yang, Huiting, Bai, Yunxiao, Zou, Zhenwan, Shi, Yuanyuan, Chen, Shuting, Ni, Chenxi.  2019.  Research on Security Self-defense of Power Information Network Based on Artificial Intelligence. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1248—1251.
By studying the problems of network information security in power system, this paper proposes a self-defense research and solution for power information network based on artificial intelligence. At the same time, it proposes active defense new technologies such as vulnerability scanning, baseline scanning, network security attack and defense drills in power information network security, aiming at improving the security level of network information and ensuring the security of the information network in the power system.
2020-08-10
Qin, Hao, Li, Zhi, Hu, Peng, Zhang, Yulong, Dai, Yuwen.  2019.  Research on Point-To-Point Encryption Method of Power System Communication Data Based on Block Chain Technology. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :328–332.
Aiming at the poor stability of traditional communication data encryption methods, a point-to-point encryption method of power system communication data based on block chain technology is studied and designed. According to the principle of asymmetric key encryption, the design method makes use of the decentralization and consensus mechanism of block chain technology to develop the public key distribution scheme. After the public key distribution is completed, the sender and receiver of communication data generate the transfer key and pair the key with the public key to realize the pairing between data points. Xor and modular exponentiation are performed on the communication data content, and prime Numbers are used to fill the content data block. The receiver decrypts the data according to the encryption identifier of the data content, and completes the design of the encryption method of communication data point to ground. Through the comparison with the traditional encryption method, it is proved that the larger the amount of encrypted data is, the more secure the communication data can be, and the stability performance is better than the traditional encryption method.
2020-07-16
Ni, Ming, Xue, Yusheng, Tong, Heqin, Li, Manli.  2018.  A cyber physical power system co-simulation platform. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—5.

With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.

Kërçi, Taulant, Milano, Federico.  2019.  A Framework to embed the Unit Commitment Problem into Time Domain Simulations. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.

2020-07-06
Xu, Zhiheng, Ng, Daniel Jun Xian, Easwaran, Arvind.  2019.  Automatic Generation of Hierarchical Contracts for Resilience in Cyber-Physical Systems. 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :1–11.

With the growing scale of Cyber-Physical Systems (CPSs), it is challenging to maintain their stability under all operating conditions. How to reduce the downtime and locate the failures becomes a core issue in system design. In this paper, we employ a hierarchical contract-based resilience framework to guarantee the stability of CPS. In this framework, we use Assume Guarantee (A-G) contracts to monitor the non-functional properties of individual components (e.g., power and latency), and hierarchically compose such contracts to deduce information about faults at the system level. The hierarchical contracts enable rapid fault detection in large-scale CPS. However, due to the vast number of components in CPS, manually designing numerous contracts and the hierarchy becomes challenging. To address this issue, we propose a technique to automatically decompose a root contract into multiple lower-level contracts depending on I/O dependencies between components. We then formulate a multi-objective optimization problem to search the optimal parameters of each lower-level contract. This enables automatic contract refinement taking into consideration the communication overhead between components. Finally, we use a case study from the manufacturing domain to experimentally demonstrate the benefits of the proposed framework.

2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
Jaiswal, Prajwal Kumar, Das, Sayari, Panigrahi, Bijaya Ketan.  2019.  PMU Based Data Driven Approach For Online Dynamic Security Assessment in Power Systems. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1—7.

This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.

2020-05-08
Su, Yu, Wu, Jing, Long, Chengnian, Li, Shaoyuan.  2018.  Event-triggered Control for Networked Control Systems Under Replay Attacks. 2018 Chinese Automation Congress (CAC). :2636—2641.
With wide application of networked control systems(N CSs), NCSs security have encountered severe challenges. In this paper, we propose a robust event-triggered controller design method under replay attacks, and the control signal on the plant is updated only when the event-triggering condition is satisfied. We develop a general random replay attack model rather than predetermined specific patterns for the occurrences of replay attacks, which allows to obtain random states to replay. We show that the proposed event-triggered control (ETC) scheme, if well designed, can tolerate some consecutive replay attacks, without affecting the corresponding closed-loop system stability and performance. A numerical examples is finally given to illustrate the effectiveness of our method.
Yang, Zai-xin, Gao, Chen, Wang, Yun-min.  2018.  Security and Stability Control System Simulation Using RTDS. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :1737—1740.
Analyzing performance of security and stability control system is of great importance for the safe and stable operation of the power grid. Digital dynamic experimental model is built by real time digital simulation (RTDS) in order to research security and stability system of Inner Mongolia in northern 500kV transmission channel. The whole process is closed-loop dynamic real-time simulation. According to power grid network testing technology standard, all kinds of stability control devices need to be tested in a comprehensive system. Focus on the following items: security and stability control strategy, tripping criterion as well as power system low frequency oscillations. Results of the trial indicated that the simulation test platform based on RTDS have the ability of detecting the safe and stable device. It can reflect the action behavior and control characteristics of the safe and stable device accurately. The device can be used in the case of low frequency oscillation of the system.