Visible to the public Biblio

Found 381 results

Filters: Keyword is Predictive Metrics  [Clear All Filters]
2021-11-08
Wang, Zhe, Chen, Yonghong, Wang, Linfan, Xie, Jinpu.  2020.  A Flow Correlation Scheme Based on Perceptual Hash and Time-Frequency Feature. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:2023–2027.
Flow correlation can identify attackers who use anonymous networks or stepping stones. The current flow correlation scheme based on watermark can effectively trace the network traffic. But it is difficult to balance robustness and invisibility. This paper presents an innovative flow correlation scheme that guarantees invisibility. First, the scheme generates a two-dimensional feature matrix by segmenting the network flow. Then, features of frequency and time are extracted from the matrix and mapped into perceptual hash sequences. Finally, by comparing the hash sequence similarity to correlate the network flow, the scheme reduces the complexity of the correlation while ensuring the accuracy of the flow correlation. Experimental results show that our scheme is robust to jitter, packet insertion and loss.
Aygül, Mehmet Ali, Nazzal, Mahmoud, Ekti, Ali Rıza, Görçin, Ali, da Costa, Daniel Benevides, Ateş, Hasan Fehmi, Arslan, Hüseyin.  2020.  Spectrum Occupancy Prediction Exploiting Time and Frequency Correlations Through 2D-LSTM. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
The identification of spectrum opportunities is a pivotal requirement for efficient spectrum utilization in cognitive radio systems. Spectrum prediction offers a convenient means for revealing such opportunities based on the previously obtained occupancies. As spectrum occupancy states are correlated over time, spectrum prediction is often cast as a predictable time-series process using classical or deep learning-based models. However, this variety of methods exploits time-domain correlation and overlooks the existing correlation over frequency. In this paper, differently from previous works, we investigate a more realistic scenario by exploiting correlation over time and frequency through a 2D-long short-term memory (LSTM) model. Extensive experimental results show a performance improvement over conventional spectrum prediction methods in terms of accuracy and computational complexity. These observations are validated over the real-world spectrum measurements, assuming a frequency range between 832-862 MHz where most of the telecom operators in Turkey have private uplink bands.
Zhu, Huifeng, Guo, Xiaolong, Jin, Yier, Zhang, Xuan.  2020.  PowerScout: A Security-Oriented Power Delivery Network Modeling Framework for Cross-Domain Side-Channel Analysis. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
The growing complexity of modern electronic systems often leads to the design of more sophisticated power delivery networks (PDNs). Similar to other system-level shared resources, the on-board PDN unintentionally introduces side channels across design layers and voltage domains, despite the fact that PDNs are not part of the functional design. Recent work have demonstrated that exploitation of the side channel can compromise the system security (i.e. information leakage and fault injection). In this work, we systematically investigate the PDN-based side channel as well as the countermeasures. To facilitate our goal, we develop PowerScout, a security-oriented PDN simulation framework that unifies the modeling of different PDN-based side-channel attacks. PowerScout performs fast nodal analysis of complex PDNs at the system level to quantitatively evaluate the severity of side-channel vulnerabilities. With the support of PowerScout, for the first time, we validate PDN side-channel attacks in literature through simulation results. Further, we are able to quantitatively measure the security impact of PDN parameters and configurations. For example, towards information leakage, removing near-chip capacitors can increase intra-chip information leakage by a maximum of 23.23dB at mid-frequency and inter-chip leakage by an average of 31.68dB at mid- and high-frequencies. Similarly, the optimal toggling frequency and duty cycle are derived to achieve fault injection attacks with higher success rate and more precise control.
Gao, Teng, Wang, Lijun, Jin, Xiaofan.  2020.  Analysis of Frequency Offset for Satellite Navigation Receiver Using Carrier-Aided Code Tracking Loop. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :627–630.
Carrier-aided code tracking loop is widely used in satellite navigation receivers. This kind of loop structure can reduce code tracking noise by narrowing the bandwidth of code tracking loop. The performance of carrier-aided code tracking loop in receivers is affected by frequency deviation of reference clock source. This paper analyzes the influence of carrier frequency offset and sampling frequency offset on carrier-aided code tracking loop due to reference clock offset. The results show that large frequency offset can cause code tracking loop lose lock, code tracking loop is more sensitive to sampling frequency deviation and increasing the loop bandwidth can reduce the effects of frequency offset. This analysis provides reference for receiver tracking loop design.
Golstein, Sidney, Nguyen, Trung-Hien, Horlin, François, Doncker, Philippe De, Sarrazin, Julien.  2020.  Physical Layer Security in Frequency-Domain Time-Reversal SISO OFDM Communication. 2020 International Conference on Computing, Networking and Communications (ICNC). :222–227.
A frequency domain (FD) time-reversal (TR) pre-coder is proposed to perform physical layer security (PLS) in single-input single-output (SISO) system using orthogonal frequency-division multiplexing (OFDM). To maximize the secrecy of the communication, the design of an artificial noise (AN) signal well-suited to the proposed FD TR-based OFDM SISO system is derived. This new scheme guarantees the secrecy of a communication toward a legitimate user when the channel state information (CSI) of a potential eavesdropper is not known. In particular, we derive an AN signal that does not corrupt the data transmission to the legitimate receiver but degrades the decoding performance of the eavesdropper. A closed-form approximation of the AN energy to inject is defined in order to maximize the secrecy rate (SR) of the communication. Simulation results are presented to demonstrate the security performance of the proposed secure FD TR SISO OFDM system.
Li, Gao, Xu, Jianliang, Shen, Weiguo, Wang, Wei, Liu, Zitong, Ding, Guoru.  2020.  LSTM-based Frequency Hopping Sequence Prediction. 2020 International Conference on Wireless Communications and Signal Processing (WCSP). :472–477.
The continuous change of communication frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication. The core of this communication process is the frequency-hopping (FH) sequence with pseudo-random characteristics, which controls carrier frequency hopping. However, FH sequence is always generated by a certain model and is a kind of time sequence with certain regularity. Long Short-Term Memory (LSTM) neural network in deep learning has been proved to have strong ability to solve time series problems. Therefore, in this paper, we establish LSTM model to implement FH sequence prediction. The simulation results show that LSTM-based scheme can effectively predict frequency point by point based on historical HF frequency data. Further, we achieve frequency interval prediction based on frequency point prediction.
Zhu, Qianqian, Li, Yue, He, Hongchang, Huang, Gang.  2020.  Cross-term suppression of multi-component signals based on improved STFT-Wigner. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1082–1086.
Cross-term interference exists in the WVD of multi-component signals in time-frequency analysis, and the STFT is limited by Heisenberg uncertainty criterion. For multicomponent signals under noisy background, this paper proposes an improved STFT-Wigner algorithm, which establishes a threshold based on the exponential multiplication result compared to the original algorithm, so as to weaken the cross term and reduce the impact of noise on the signal, and improve the time-frequency aggregation of the signal. Simulation results show that the improved algorithm has higher time-frequency aggregation than other methods. Similarly, for cross-term suppression, our method is superior to many other TF analysis methods in low signal-to-noise ratio (SNR) environment.
Baldini, Gianmarco.  2020.  Analysis of Encrypted Traffic with time-based features and time frequency analysis. 2020 Global Internet of Things Summit (GIoTS). :1–5.
The classification of encrypted traffic has received increased attention by the research community in the cyber-security domains and network management domains. Classification of encrypted traffic can also expose privacy threats as the activities of an user can be detected and identified. This paper investigates the novel application of Time Frequency analysis to encrypted traffic classification. Features extracted from encrypted traffic are normalized and transformed to time series on which different time frequency transforms are applied. In particular, the constant-Q transform (CQT), the Continuous Wavelet Transform and the Wigner-Ville distribution are used. Then, different machine learning algorithms are applied to identify the different types of traffic. This approach is validated with the public ISCX VPN-nonVPN traffic dataset with time-based features extracted from the encrypted traffic. The results show the superior classification performance (evaluated using identification, precision and recall metrics) of the time frequency approach across different machine learning algorithms. Because analysis of encrypted traffic can also generate privacy threats, a technique to obfuscate the time based features and reduce the classification performance is also applied and successfully validated.
Tang, Nan, Zhou, Wanting, Li, Lei, Yang, Ji, Li, Rui, He, Yuanhang.  2020.  Hardware Trojan Detection Method Based on the Frequency Domain Characteristics of Power Consumption. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :410–413.
Hardware security has long been an important issue in the current IC design. In this paper, a hardware Trojan detection method based on frequency domain characteristics of power consumption is proposed. For some HTs, it is difficult to detect based on the time domain characteristics, these types of hardware Trojan can be analyzed in the frequency domain, and Mahalanobis distance is used to classify designs with or without HTs. The experimental results demonstrate that taking 10% distance as the criterion, the hardware Trojan detection results in the frequency domain have almost no failure cases in all the tested designs.
Maruthi, Vangalli, Balamurugan, Karthigha, Mohankumar, N..  2020.  Hardware Trojan Detection Using Power Signal Foot Prints in Frequency Domain. 2020 International Conference on Communication and Signal Processing (ICCSP). :1212–1216.
This work proposes a plausible detection scheme for Hardware Trojan (HT) detection in frequency domain analysis. Due to shrinking technology every node consumes low power values (in the range of $μ$W) which are difficult to manipulate for HT detection using conventional methods. The proposed method utilizes the time domain power signals which is converted to frequency domain that represents the implausible signals and analyzed. The precision of HT detection is found to be increased because of the magnified power values in frequency domain. This work uses ISCAS89 bench mark circuits for conducting experiments. In this, the wide range of power values that spans from 695 $μ$W to 22.3 $μ$W are observed in frequency domain whereas the respective powers in time domain have narrow span of 2.29 $μ$W to 0.783 $μ$W which is unconvincing. This work uses the wide span of power values to identify HT and observed that the mid-band of frequencies have larger footprints than the side bands. These methods intend to help the designers in easy identification of HT even of single gate events.
2021-10-12
Gouk, Henry, Hospedales, Timothy M..  2020.  Optimising Network Architectures for Provable Adversarial Robustness. 2020 Sensor Signal Processing for Defence Conference (SSPD). :1–5.
Existing Lipschitz-based provable defences to adversarial examples only cover the L2 threat model. We introduce the first bound that makes use of Lipschitz continuity to provide a more general guarantee for threat models based on any Lp norm. Additionally, a new strategy is proposed for designing network architectures that exhibit superior provable adversarial robustness over conventional convolutional neural networks. Experiments are conducted to validate our theoretical contributions, show that the assumptions made during the design of our novel architecture hold in practice, and quantify the empirical robustness of several Lipschitz-based adversarial defence methods.
Dong, Sichen, Jiao, Jian, Li, Shuyu.  2020.  A Multiple-Replica Provable Data Possession Algorithm Based on Branch Authentication Tree. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :400–404.
The following topics are dealt with: learning (artificial intelligence); neural nets; feature extraction; pattern classification; convolutional neural nets; computer network security; security of data; recurrent neural nets; data privacy; and cloud computing.
Muller, Tim, Wang, Dongxia, Sun, Jun.  2020.  Provably Robust Decisions based on Potentially Malicious Sources of Information. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :411–424.
Sometimes a security-critical decision must be made using information provided by peers. Think of routing messages, user reports, sensor data, navigational information, blockchain updates. Attackers manifest as peers that strategically report fake information. Trust models use the provided information, and attempt to suggest the correct decision. A model that appears accurate by empirical evaluation of attacks may still be susceptible to manipulation. For a security-critical decision, it is important to take the entire attack space into account. Therefore, we define the property of robustness: the probability of deciding correctly, regardless of what information attackers provide. We introduce the notion of realisations of honesty, which allow us to bypass reasoning about specific feedback. We present two schemes that are optimally robust under the right assumptions. The “majority-rule” principle is a special case of the other scheme which is more general, named “most plausible realisations”.
El-Sobky, Mariam, Sarhan, Hisham, Abu-ElKheir, Mervat.  2020.  Security Assessment of the Contextual Multi-Armed Bandit - RL Algorithm for Link Adaptation. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :514–519.
Industry is increasingly adopting Reinforcement Learning algorithms (RL) in production without thoroughly analyzing their security features. In addition to the potential threats that may arise if the functionality of these algorithms is compromised while in operation. One of the well-known RL algorithms is the Contextual Multi-Armed Bandit (CMAB) algorithm. In this paper, we explore how the CMAB can be used to solve the Link Adaptation problem - a well-known problem in the telecommunication industry by learning the optimal transmission parameters that will maximize a communication link's throughput. We analyze the potential vulnerabilities of the algorithm and how they may adversely affect link parameters computation. Additionally, we present a provable security assessment for the Contextual Multi-Armed Bandit Reinforcement Learning (CMAB-RL) algorithm in a network simulated environment using Ray. This is by demonstrating CMAB security vulnerabilities theoretically and practically. Some security controls are proposed for CMAB agent and the surrounding environment. In order to fix those vulnerabilities and mitigate the risk. These controls can be applied to other RL agents in order to design more robust and secure RL agents.
Li, Xinyu, Xu, Jing, Zhang, Zhenfeng, Lan, Xiao, Wang, Yuchen.  2020.  Modular Security Analysis of OAuth 2.0 in the Three-Party Setting. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :276–293.
OAuth 2.0 is one of the most widely used Internet protocols for authorization/single sign-on (SSO) and is also the foundation of the new SSO protocol OpenID Connect. Due to its complexity and its flexibility, it is difficult to comprehensively analyze the security of the OAuth 2.0 standard, yet it is critical to obtain practical security guarantees for OAuth 2.0. In this paper, we present the first computationally sound security analysis of OAuth 2.0. First, we introduce a new primitive, the three-party authenticated secret distribution (3P-ASD for short) protocol, which plays the role of issuing the secret and captures the token issue process of OAuth 2.0. As far as we know, this is the first attempt to formally abstract the authorization technology into a general primitive and then define its security. Then, we present a sufficiently rich three-party security model for OAuth protocols, covering all kinds of authorization flows, providing reasonably strong security guarantees and moreover capturing various web features. To confirm the soundness of our model, we also identify the known attacks against OAuth 2.0 in the model. Furthermore, we prove that two main modes of OAuth 2.0 can achieve our desired security by abstracting the token issue process into a 3P-ASD protocol. Our analysis is not only modular which can reflect the compositional nature of OAuth 2.0, but also fine-grained which can evaluate how the intermediate parameters affect the final security of OAuth 2.0.
2021-10-04
Masood, Raziqa, Pandey, Nitin, Rana, Q. P..  2020.  DHT-PDP: A Distributed Hash Table based Provable Data Possession Mechanism in Cloud Storage. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :275–279.
The popularity of cloud storage among data users is due to easy maintenance, and no initial infrastructure setup cost as compared to local storage. However, although the data users outsource their data to cloud storage (a third party) still, they concern about their physical data. To check whether the data stored in the cloud storage has been modified or not, public auditing of the data is required before its utilization. To audit over vast outsourced data, the availability of the auditor is an essential requirement as nowadays, data owners are using mobile devices. But unfortunately, a single auditor leads to a single point of failure and inefficient to preserve the security and correctness of outsourced data. So, we introduce a distributed public auditing scheme which is based on peer-to-peer (P2P) architecture. In this work, the auditors are organized using a distributed hash table (DHT) mechanism and audit the outsourced data with the help of a published hashed key of the data. The computation and communication overhead of our proposed scheme is compared with the existing schemes, and it found to be an effective solution for public auditing on outsourced data with no single point of failure.
2021-09-30
Ashiquzzaman, Md., Mitra, Shuva, Nasrin, Kazi Farjana, Hossain, Md. Sanawar, Apu, Md. Khairul Hasan.  2020.  Advanced Wireless Control amp; Feedback Based Multi-functional Automatic Security System. 2020 IEEE Region 10 Symposium (TENSYMP). :1046–1049.
In this research work, an advanced automatic multifunctional compact security system technology is developed using wireless networking system. The security system provides smart security and also alerts the user to avoid the critical circumstances in the daily security issues is held. This system provides a smart solution to the variety of different problems via remote control by the software name Cayenne. This software provides the user to control the system using smart mobile or computer from all over the world and needs to be connected via internet. The system provides general security for essential purposes as the Motion detecting system alerts for any kind of movement inside the area where it is installed, the gas detecting system alerts the user for any type of gas leakage inside the room and also clearing the leaking gas by exhaust fan automatically, the fire detection system detects instantly when a slight fire is emerged also warning the user with alarm, the LDR system is for electrical door lock and it can be controlled by Cayenne using mobile or computer and lastly a home light system which can be turned on/off by the user of Cayenne. Raspberry Pi has been used to connect and control all the necessary equipment. The system provides the most essential security for home and also for corporate world and it is very simple, easy to operate, and consumes small space.
Bhowmick, Chandreyee, Jagannathan, S..  2020.  Availability-Resilient Control of Uncertain Linear Stochastic Networked Control Systems. 2020 American Control Conference (ACC). :4016–4021.
The resilient output feedback control of linear networked control (NCS) system with uncertain dynamics in the presence of Gaussian noise is presented under the denial of service (DoS) attacks on communication networks. The DoS attacks on the sensor-to-controller (S-C) and controller- to-actuator (C-A) networks induce random packet losses. The NCS is viewed as a jump linear system, where the linear NCS matrices are a function of induced losses that are considered unknown. A set of novel correlation detectors is introduced to detect packet drops in the network channels using the property of Gaussian noise. By using an augmented system representation, the output feedback Q-learning based control scheme is designed for the jump linear NCS with uncertain dynamics to cope with the changing values of the mean packet losses. Simulation results are included to support the theoretical claims.
Xu, Aidong, Jiang, Yixin, Zhang, Yunan, Hong, Chao, Cai, Xingpu.  2020.  A Double-Layer Cyber Physical Cooperative Emergency Control Strategy Modification Method for Cyber-Attacks Against Power System. 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). :1–5.
With the great development of the information communication technology, power systems have been typical Cyber Physical Systems (CPSs). Although the control function of the grid side is becoming more intelligent, Grid Cyber Physical System (GCPS) brings the risk of potential cyberattacks. In this paper, the impacts of cyber-attacks against GCPS are analyzed based on confusion matrix model firstly, then a double-layer cyber physical collaboration control strategy adjustment methods is proposed considering the status of cyber modules and physical devices infected by cyber-attacks. Finally, the feasibility and effectiveness of the proposed method are verified on the IEEE standard system.
Xudong, Yang.  2020.  Network congestion control and reliability optimization with multiple time delays from the perspective of information security. 2020 International Conference on Advance in Ambient Computing and Intelligence (ICAACI). :16–20.
As a new type of complex system, multi delay network in the field of information security undertakes the important responsibility of solving information congestion, balancing network bandwidth and traffic. The problems of data loss, program failure and a large number of system downtime still exist in the conventional multi delay system when dealing with the problem of information jam, which makes the corresponding reliability of the whole system greatly reduced. Based on this, this paper mainly studies and analyzes the stability system and reliability of the corresponding multi delay system in the information security perspective. In this paper, the stability and reliability analysis of multi delay systems based on linear matrix and specific function environment is innovatively proposed. Finally, the sufficient conditions of robust asymptotic stability of multi delay systems are obtained. At the same time, the relevant stability conditions and robust stability conditions of multi delay feedback switched systems are given by simulation. In the experimental part, the corresponding data and conclusions are simulated. The simulation results show that the reliability and stability analysis data of multi delay system proposed in this paper have certain experimental value.
Hu, Zenghui, Mu, Xiaowu.  2020.  Event-triggered Control for Stochastic Networked Control Systems under DoS Attacks. 2020 39th Chinese Control Conference (CCC). :4389–4394.
This paper investigates the event-triggered control (ETC) problem for stochastic networked control systems (NCSs) with exogenous disturbances and Denial-of-Service (DoS) attacks. The ETC strategy is proposed to reduce the utilization of network resource while defending the DoS attacks. Based on the introduced ETC strategy, sufficient conditions, which rely on the frequency and duration properties of DoS attacks, are obtained to achieve the stochastic input-to-state stability and Zeno-freeness of the ETC stochastic NCSs. An example of air vehicle system is given to explain the effectiveness of proposed ETC strategy.
Cao, Yaofu, Li, Xiaomeng, Zhang, Shulin, Li, Yang, Chen, Liang, He, Yunrui.  2020.  Design of network security situation awareness analysis module for electric power dispatching and control system. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). :716–720.
The current network security situation of the electric power dispatching and control system is becoming more and more severe. On the basis of the original network security management platform, to increase the collection of network security data information and improve the network security analysis ability, this article proposes the electric power dispatching and control system network security situation awareness analysis module. The perception layer accesses multi-source heterogeneous data sources. Upwards through the top layer, data standardization will be introduced, who realizes data support for security situation analysis, and forms an association mapping with situation awareness elements such as health situation, attack situation, behavior situation, and operation situation. The overall effect is achieving the construction goals of "full control of equipment status, source of security attacks can be traced, operational risks are identifiable, and abnormal behaviors can be found.".
2021-09-21
bin Asad, Ashub, Mansur, Raiyan, Zawad, Safir, Evan, Nahian, Hossain, Muhammad Iqbal.  2020.  Analysis of Malware Prediction Based on Infection Rate Using Machine Learning Techniques. 2020 IEEE Region 10 Symposium (TENSYMP). :706–709.
In this modern, technological age, the internet has been adopted by the masses. And with it, the danger of malicious attacks by cybercriminals have increased. These attacks are done via Malware, and have resulted in billions of dollars of financial damage. This makes the prevention of malicious attacks an essential part of the battle against cybercrime. In this paper, we are applying machine learning algorithms to predict the malware infection rates of computers based on its features. We are using supervised machine learning algorithms and gradient boosting algorithms. We have collected a publicly available dataset, which was divided into two parts, one being the training set, and the other will be the testing set. After conducting four different experiments using the aforementioned algorithms, it has been discovered that LightGBM is the best model with an AUC Score of 0.73926.
Vurdelja, Igor, Blažić, Ivan, Bojić, Dragan, Drašković, Dražen.  2020.  A framework for automated dynamic malware analysis for Linux. 2020 28th Telecommunications Forum (℡FOR). :1–4.
Development of malware protection tools requires a more advanced test environment comparing to safe software. This kind of development includes a safe execution of many malware samples in order to evaluate the protective power of the tool. The host machine needs to be protected from the harmful effects of malware samples and provide a realistic simulation of the execution environment. In this paper, a framework for automated malware analysis on Linux is presented. Different types of malware analysis methods are discussed, as well as the properties of a good framework for dynamic malware analysis.
Jin, Xiang, Xing, Xiaofei, Elahi, Haroon, Wang, Guojun, Jiang, Hai.  2020.  A Malware Detection Approach Using Malware Images and Autoencoders. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :1–6.
Most machine learning-based malware detection systems use various supervised learning methods to classify different instances of software as benign or malicious. This approach provides no information regarding the behavioral characteristics of malware. It also requires a large amount of training data and is prone to labeling difficulties and can reduce accuracy due to redundant training data. Therefore, we propose a malware detection method based on deep learning, which uses malware images and a set of autoencoders to detect malware. The method is to design an autoencoder to learn the functional characteristics of malware, and then to observe the reconstruction error of autoencoder to realize the classification and detection of malware and benign software. The proposed approach achieves 93% accuracy and comparatively better F1-score values while detecting malware and needs little training data when compared with traditional malware detection systems.