Visible to the public Biblio

Found 159 results

Filters: Keyword is social networking (online)  [Clear All Filters]
2021-10-12
Chang, Kai Chih, Nokhbeh Zaeem, Razieh, Barber, K. Suzanne.  2020.  Is Your Phone You? How Privacy Policies of Mobile Apps Allow the Use of Your Personally Identifiable Information 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :256–262.
People continue to store their sensitive information in their smart-phone applications. Users seldom read an app's privacy policy to see how their information is being collected, used, and shared. In this paper, using a reference list of over 600 Personally Identifiable Information (PII) attributes, we investigate the privacy policies of 100 popular health and fitness mobile applications in both Android and iOS app markets to find the set of personal information these apps collect, use and share. The reference list of PII was independently built from a longitudinal study at The University of Texas investigating thousands of identity theft and fraud cases where PII attributes and associated value and risks were empirically quantified. This research leverages the reference PII list to identify and analyze the value of personal information collected by the mobile apps and the risk of disclosing this information. We found that the set of PII collected by these mobile apps covers 35% of the entire reference set of PII and, due to dependencies between PII attributes, these mobile apps have a likelihood of indirectly impacting 70% of the reference PII if breached. For a specific app, we discovered the monetary loss could reach \$1M if the set of sensitive data it collects is breached. We finally utilize Bayesian inference to measure risks of a set of PII gathered by apps: the probability that fraudsters can discover, impersonate and cause harm to the user by misusing only the PII the mobile apps collected.
2021-09-30
KOSE, Busra OZDENIZCI, BUK, Onur, MANTAR, Haci Ali, COSKUN, Vedat.  2020.  TrustedID: An Identity Management System Based on OpenID Connect Protocol. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–6.
Today, authentication and non-repudiation of actions are essential requirements for almost all mobile services. In this respect, various common identity systems (such as Facebook Login, Google Sign-In, Apple ID and many other) based on OpenID Connect protocol have been introduced that support easier password management for users, and reduce potential risks by securing the service provider and the user. With the widespread use of the Internet, smartphones can offer many services with rich content. The use of common identity systems on mobile devices with a high security level is becoming a more important requirement. At this point, MNOs (Mobile Network Operators) have a significant potential and capability for providing common identity services. The existing solutions based on Mobile Connect standard provide generally low level of assurance. Accordingly, there is an urgent need for a common identity system that provide higher level of assurance and security for service providers. This study presents a multi-factor authentication mechanism called TrustedID system that is based on Mobile Connect and OpenID Connect standards, and ensures higher level of assurance. The proposed system aims to use three identity factors of the user in order to access sensitive mobile services on the smartphone. The proposed authentication system will support improvement of new value-added services and also support the development of mobile ecosystem.
2021-09-07
Franco, Muriel Figueredo, Rodrigues, Bruno, Scheid, Eder John, Jacobs, Arthur, Killer, Christian, Granville, Lisandro Zambenedetti, Stiller, Burkhard.  2020.  SecBot: a Business-Driven Conversational Agent for Cybersecurity Planning and Management. 2020 16th International Conference on Network and Service Management (CNSM). :1–7.
Businesses were moving during the past decades to-ward full digital models, which made companies face new threats and cyberattacks affecting their services and, consequently, their profits. To avoid negative impacts, companies' investments in cybersecurity are increasing considerably. However, Small and Medium-sized Enterprises (SMEs) operate on small budgets, minimal technical expertise, and few personnel to address cybersecurity threats. In order to address such challenges, it is essential to promote novel approaches that can intuitively present cybersecurity-related technical information.This paper introduces SecBot, a cybersecurity-driven conversational agent (i.e., chatbot) for the support of cybersecurity planning and management. SecBot applies concepts of neural networks and Natural Language Processing (NLP), to interact and extract information from a conversation. SecBot can (a) identify cyberattacks based on related symptoms, (b) indicate solutions and configurations according to business demands, and (c) provide insightful information for the decision on cybersecurity investments and risks. A formal description had been developed to describe states, transitions, a language, and a Proof-of-Concept (PoC) implementation. A case study and a performance evaluation were conducted to provide evidence of the proposed solution's feasibility and accuracy.
2021-08-31
S, Sahana, Shankaraiah.  2020.  Securing Govt Research Content using QR Code Image. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Government division may be a crucial portion of the nation's economy. Security of government inquire about substance from all sorts of dangers is basic not as it were for trade coherence but too for supporting the economy of the country as a entirety. With the digitization of conventional records, government substances experience troublesome issues, such as government capacity and access. Research office spend significant time questioning the specified information when getting to Government investigate substance subtle elements, but the gotten information are not fundamentally rectify, and get to is some of the time limited. On this premise, this think about proposes a investigate substance which utilize ciphertext-based encryption to guarantee information privacy and get to control of record subtle elements. The investigate head may scramble the put away data for accomplishing get to control and keeping information secure. In this manner AES Rijndael calculation is utilized for encryption. This guarantees security for the data and empowers Protection.
Wang, Jia, Gao, Min, Wang, Zongwei, Wang, Runsheng, Wen, Junhao.  2020.  Robustness Analysis of Triangle Relations Attack in Social Recommender Systems. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :557–565.
Cloud computing is applied in various domains, among which social recommender systems are well-received because of their effectivity to provide suggestions for users. Social recommender systems perform well in alleviating cold start problem, but it suffers from shilling attack due to its natural openness. Shilling attack is an injection attack mainly acting on the training process of machine learning, which aims to advance or suppress the recommendation ranking of target items. Some researchers have studied the influence of shilling attacks in two perspectives simultaneously, which are user-item's rating and user-user's relation. However, they take more consideration into user-item's rating, and up to now, the construction of user-user's relation has not been explored in depth. To explore shilling attacks with complex relations, in this paper, we propose two novel attack models based on triangle relations in social networks. Furthermore, we explore the influence of these models on five social recommendation algorithms. The experimental results on three datasets show that the recommendation can be affected by the triangle relation attacks. The attack model combined with triangle relation has a better attack effect than the model only based on rating injection and the model combined with random relation. Besides, we compare the functions of triangle relations in friend recommendation and product recommendation.
Zarzour, Hafed, Al shboul, Bashar, Al-Ayyoub, Mahmoud, Jararweh, Yaser.  2020.  A convolutional neural network-based reviews classification method for explainable recommendations. 2020 Seventh International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–5.
Recent advances in information filtering have resulted in effective recommender systems that are able to provide online personalized recommendations to millions of users from all over the world. However, most of these systems ignore the explanation purpose while producing recommendations with high-quality results. Moreover, the classification of reviews given to users as explanations is not fully exploited in previous studies. In this paper, we develop a convolutional neural network-based reviews classification method for explainable recommendation systems. The convolutional neural network is used to extract the reviews features for predicting whether the reviews provided as explanations are positive or negative. Based on such additional information, users can understand not only why certain items are recommended for them but also get support to know the nature of such explanations. We conduct experiments on a dataset from Amazon. The experimental results show that our method outperforms state-of-the-art methods.
Mahmood, Sabah Robitan, Hatami, Mohammad, Moradi, Parham.  2020.  A Trust-based Recommender System by Integration of Graph Clustering and Ant Colony Optimization. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :598–604.
Recommender systems (RSs) are intelligent systems to help e-commerce users to find their preferred items among millions of available items by considering the profiles of both users and items. These systems need to predict the unknown ratings and then recommend a set of high rated items. Among the others, Collaborative Filtering (CF) is a successful recommendation approach and has been utilized in many real-world systems. CF methods seek to predict missing ratings by considering the preferences of those users who are similar to the target user. A major task in Collaborative Filtering is to identify an accurate set of users and employing them in the rating prediction process. Most of the CF-based methods suffer from the cold-start issue which arising from an insufficient number of ratings in the prediction process. This is due to the fact that users only comment on a few items and thus CF methods faced with a sparse user-item matrix. To tackle this issue, a new collaborative filtering method is proposed that has a trust-aware strategy. The proposed method employs the trust relationships of users as additional information to help the CF tackle the cold-start issue. To this end, the proposed integrated trust relationships in the prediction process by using the Ant Colony Optimization (ACO). The proposed method has four main steps. The aim of the first step is ranking users based on their similarities to the target user. This step uses trust relationships and the available rating values in its process. Then in the second step, graph clustering methods are used to cluster the trust graph to group similar users. In the third step, the users are weighted based on their similarities to the target users. To this end, an ACO process is employed on the users' graph. Finally, those of top users with high similarity to the target user are used in the rating prediction process. The superiority of our method has been shown in the experimental results in comparison with well-known and state-of-the-art methods.
Vonitsanos, Gerasimos, Dritsas, Elias, Kanavos, Andreas, Mylonas, Phivos, Sioutas, Spyros.  2020.  Security and Privacy Solutions associated with NoSQL Data Stores. 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization (SMA). :1—5.
Technologies such as cloud computing and big data management, have lately made significant progress creating an urgent need for specific databases that can safely store extensive data along with high availability. Specifically, a growing number of companies have adopted various types of non-relational databases, commonly referred to as NoSQL databases. These databases provide a robust mechanism for the storage and retrieval of large amounts of data without using a predefined schema. NoSQL platforms are superior to RDBMS, especially in cases when we are dealing with big data and parallel processing, and in particular, when there is no need to use relational modeling. Sensitive data is stored daily in NoSQL Databases, making the privacy problem more serious while raising essential security issues. In our paper, security and privacy issues when dealing with NoSQL databases are introduced and in following, security mechanisms and privacy solutions are thoroughly examined.
2021-08-17
Noor, Abdul, Wu, Youxi, Khan, Salabat.  2020.  Secure and Transparent Public-key Management System for Vehicular Social Networks. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :309–316.
Vehicular Social Networks (VSNs) are expected to become a reality soon, where commuters having common interests in the virtual community of vehicles, drivers, passengers can share information, both about road conditions and their surroundings. This will improve transportation efficiency and public safety. However, social networking exposes vehicles to different kinds of cyber-attacks. This concern can be addressed through an efficient and secure key management framework. This study presents a Secure and Transparent Public-key Management (ST-PKMS) based on blockchain and notary system, but it addresses security and privacy challenges specific to VSNs. ST-PKMS significantly enhances the efficiency and trustworthiness of mutual authentication. In ST-PKMS, each vehicle has multiple short-lived anonymous public-keys, which are recorded on the blockchain platform. However, public-keys get activated only when a notary system notarizes it, and clients accept only notarized public-keys during mutual authentication. Compromised vehicles can be effectively removed from the VSNs by blocking notarization of their public-keys; thus, the need to distribute Certificate Revocation List (CRL) is eliminated in the proposed scheme. ST-PKMS ensures transparency, security, privacy, and availability, even in the face of an active adversary. The simulation and evaluation results show that the ST-PKMS meets real-time performance requirements, and it is cost-effective in terms of scalability, delay, and communication overhead.
2021-08-11
MILLAR, KYLE, CHENG, ADRIEL, CHEW, HONG GUNN, LIM, CHENG-CHEW.  2020.  Operating System Classification: A Minimalist Approach. 2020 International Conference on Machine Learning and Cybernetics (ICMLC). :143—150.
Operating system (OS) classification is of growing importance to network administrators and cybersecurity analysts alike. The composition of OSs on a network allows for a better quality of device management to be achieved. Additionally, it can be used to identify devices that pose a security risk to the network. However, the sheer number and diversity of OSs that comprise modern networks have vastly increased this management complexity. We leverage insights from social networking theory to provide an encryption-invariant OS classification technique that is quick to train and widely deployable on various network configurations. In particular, we show how an affiliation graph can be used as an input to a machine learning classifier to predict the OS of a device using only the IP addresses for which the device communicates with.We examine the effectiveness of our approach through an empirical analysis of 498 devices on a university campus’ wireless network. In particular, we show our methodology can classify different OS families (i.e., Apple, Windows, and Android OSs) with an accuracy of 99.3%. Furthermore, we extend this study by: 1) examining distinct OSs (e.g., iOS, OS X, and Windows 10); 2) investigating the interval of time required to make an accurate prediction; and, 3) determining the effectiveness of our approach after six months.
2021-07-27
Fatehi, Nina, Shahhoseini, HadiShahriar.  2020.  A Hybrid Algorithm for Evaluating Trust in Online Social Networks. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). :158—162.
The acceleration of extending popularity of Online Social Networks (OSNs) thanks to various services with which they provide people, is inevitable. This is why in OSNs security as a way to protect private data of users to be abused by unauthoritative people has a vital role to play. Trust evaluation is the security approach that has been utilized since the advent of OSNs. Graph-based approaches are among the most popular methods for trust evaluation. However, graph-based models need to employ limitations in the search process of finding trusted paths. This contributes to a reduction in trust accuracy. In this investigation, a learning-based model which with no limitation is able to find reliable users of any target user, is proposed. Experimental results depict 12% improvement in trust accuracy compares to models based on the graph-based approach.
2021-07-07
Kanwal, Nadia, Asghar, Mamoona Naveed, Samar Ansari, Mohammad, Lee, Brian, Fleury, Martin, Herbst, Marco, Qiao, Yuansong.  2020.  Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
2021-06-01
Wang, Qi, Zhao, Weiliang, Yang, Jian, Wu, Jia, Zhou, Chuan, Xing, Qianli.  2020.  AtNE-Trust: Attributed Trust Network Embedding for Trust Prediction in Online Social Networks. 2020 IEEE International Conference on Data Mining (ICDM). :601–610.
Trust relationship prediction among people provides valuable supports for decision making, information dissemination, and product promotion in online social networks. Network embedding has achieved promising performance for link prediction by learning node representations that encode intrinsic network structures. However, most of the existing network embedding solutions cannot effectively capture the properties of a trust network that has directed edges and nodes with in/out links. Furthermore, there usually exist rich user attributes in trust networks, such as ratings, reviews, and the rated/reviewed items, which may exert significant impacts on the formation of trust relationships. It is still lacking a network embedding-based method that can adequately integrate these properties for trust prediction. In this work, we develop an AtNE-Trust model to address these issues. We firstly capture user embedding from both the trust network structures and user attributes. Then we design a deep multi-view representation learning module to further mine and fuse the obtained user embedding. Finally, a trust evaluation module is developed to predict the trust relationships between users. Representation learning and trust evaluation are optimized together to capture high-quality user embedding and make accurate predictions simultaneously. A set of experiments against the real-world datasets demonstrates the effectiveness of the proposed approach.
2021-05-20
Razaque, Abdul, Frej, Mohamed Ben Haj, Sabyrov, Dauren, Shaikhyn, Aidana, Amsaad, Fathi, Oun, Ahmed.  2020.  Detection of Phishing Websites using Machine Learning. 2020 IEEE Cloud Summit. :103—107.

Phishing sends malicious links or attachments through emails that can perform various functions, including capturing the victim's login credentials or account information. These emails harm the victims, cause money loss, and identity theft. In this paper, we contribute to solving the phishing problem by developing an extension for the Google Chrome web browser. In the development of this feature, we used JavaScript PL. To be able to identify and prevent the fishing attack, a combination of Blacklisting and semantic analysis methods was used. Furthermore, a database for phishing sites is generated, and the text, links, images, and other data on-site are analyzed for pattern recognition. Finally, our proposed solution was tested and compared to existing approaches. The results validate that our proposed method is capable of handling the phishing issue substantially.

2021-05-13
Kumar, Sachin, Gupta, Garima, Prasad, Ranjitha, Chatterjee, Arnab, Vig, Lovekesh, Shroff, Gautam.  2020.  CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.
2021-04-27
Saganowski, S..  2020.  A Three-Stage Machine Learning Network Security Solution for Public Entities. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1097–1104.
In the era of universal digitization, ensuring network and data security is extremely important. As a part of the Regional Center for Cybersecurity initiative, a three-stage machine learning network security solution is being developed and will be deployed in March 2021. The solution consists of prevention, monitoring, and curation stages. As prevention, we utilize Natural Language Processing to extract the security-related information from social media, news portals, and darknet. A deep learning architecture is used to monitor the network in real-time and detect any abnormal traffic. A combination of regular expressions, pattern recognition, and heuristics are applied to the abuse reports to automatically identify intrusions that passed other security solutions. The lessons learned from the ongoing development of the system, alongside the results, extensive analysis, and discussion is provided. Additionally, a cybersecurity-related corpus is described and published within this work.
Furutani, S., Shibahara, T., Hato, K., Akiyama, M., Aida, M..  2020.  Sybil Detection as Graph Filtering. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Sybils are users created for carrying out nefarious actions in online social networks (OSNs) and threaten the security of OSNs. Therefore, Sybil detection is an urgent security task, and various detection methods have been proposed. Existing Sybil detection methods are based on the relationship (i.e., graph structure) of users in OSNs. Structure-based methods can be classified into two categories: Random Walk (RW)-based and Belief Propagation (BP)-based. However, although almost all methods have been experimentally evaluated in terms of their performance and robustness to noise, the theoretical understanding of them is insufficient. In this paper, we interpret the Sybil detection problem from the viewpoint of graph signal processing and provide a framework to formulate RW- and BPbased methods as low-pass filtering. This framework enables us to theoretically compare RW- and BP-based methods and explain why BP-based methods perform well for scale-free graphs, unlike RW-based methods. Furthermore, by this framework, we relate RW- and BP-based methods and Graph Neural Networks (GNNs) and discuss the difference among these methods. Finally, we evaluate the validity of this framework through numerical experiments.
2021-04-08
Colbaugh, R., Glass, K., Bauer, T..  2013.  Dynamic information-theoretic measures for security informatics. 2013 IEEE International Conference on Intelligence and Security Informatics. :45–49.
Many important security informatics problems require consideration of dynamical phenomena for their solution; examples include predicting the behavior of individuals in social networks and distinguishing malicious and innocent computer network activities based on activity traces. While information theory offers powerful tools for analyzing dynamical processes, to date the application of information-theoretic methods in security domains has focused on static analyses (e.g., cryptography, natural language processing). This paper leverages information-theoretic concepts and measures to quantify the similarity of pairs of stochastic dynamical systems, and shows that this capability can be used to solve important problems which arise in security applications. We begin by presenting a concise review of the information theory required for our development, and then address two challenging tasks: 1.) characterizing the way influence propagates through social networks, and 2.) distinguishing malware from legitimate software based on the instruction sequences of the disassembled programs. In each application, case studies involving real-world datasets demonstrate that the proposed techniques outperform standard methods.
2021-03-30
Khan, W. Z., Arshad, Q.-u-A., Hakak, S., Khan, M. K., Saeed-Ur-Rehman.  2020.  Trust Management in Social Internet of Things: Architectures, Recent Advancements and Future Challenges. IEEE Internet of Things Journal. :1—1.

Social Internet of Things (SIoT) is an extension of Internet of Things (IoT) that converges with Social networking concepts to create Social networks of interconnected smart objects. This convergence allows the enrichment of the two paradigms, resulting into new ecosystems. While IoT follows two interaction paradigms, human-to-human (H2H) and thing-to-thing (T2T), SIoT adds on human-to-thing (H2T) interactions. SIoT enables smart “Social objects” that intelligently mimic the social behavior of human in the daily life. These social objects are equipped with social functionalities capable of discovering other social objects in the surroundings and establishing social relationships. They crawl through the social network of objects for the sake of searching for services and information of interest. The notion of trust and trustworthiness in social communities formed in SIoT is still new and in an early stage of investigation. In this paper, our contributions are threefold. First, we present the fundamentals of SIoT and trust concepts in SIoT, clarifying the similarities and differences between IoT and SIoT. Second, we categorize the trust management solutions proposed so far in the literature for SIoT over the last six years and provide a comprehensive review. We then perform a comparison of the state of the art trust management schemes devised for SIoT by performing comparative analysis in terms of trust management process. Third, we identify and discuss the challenges and requirements in the emerging new wave of SIoT, and also highlight the challenges in developing trust and evaluating trustworthiness among the interacting social objects.

2021-03-09
Hakim, A. R., Rinaldi, J., Setiadji, M. Y. B..  2020.  Design and Implementation of NIDS Notification System Using WhatsApp and Telegram. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1—4.

Network Intrusion Detection System (NIDS) can help administrators of a server in detecting attacks by analyzing packet data traffic on the network in real-time. If an attack occurs, an alert to the administrator is provided by NIDS so that the attack can be known and responded immediately. On the other hand, the alerts cannot be monitored by administrators all the time. Therefore, a system that automatically sends notifications to administrators in real-time by utilizing social media platforms is needed. This paper provides an analysis of the notification system built using Snort as NIDS with WhatsApp and Telegram as a notification platform. There are three types of attacks that are simulated and must be detected by Snort, which are Ping of Death attacks, SYN flood attacks, and SSH brute force attacks. The results obtained indicate that the system successfully provided notification in the form of attack time, IP source of the attack, source of attack port and type of attack in real-time.

2021-03-04
Carlini, N., Farid, H..  2020.  Evading Deepfake-Image Detectors with White- and Black-Box Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2804—2813.

It is now possible to synthesize highly realistic images of people who do not exist. Such content has, for example, been implicated in the creation of fraudulent socialmedia profiles responsible for dis-information campaigns. Significant efforts are, therefore, being deployed to detect synthetically-generated content. One popular forensic approach trains a neural network to distinguish real from synthetic content.We show that such forensic classifiers are vulnerable to a range of attacks that reduce the classifier to near- 0% accuracy. We develop five attack case studies on a state- of-the-art classifier that achieves an area under the ROC curve (AUC) of 0.95 on almost all existing image generators, when only trained on one generator. With full access to the classifier, we can flip the lowest bit of each pixel in an image to reduce the classifier's AUC to 0.0005; perturb 1% of the image area to reduce the classifier's AUC to 0.08; or add a single noise pattern in the synthesizer's latent space to reduce the classifier's AUC to 0.17. We also develop a black-box attack that, with no access to the target classifier, reduces the AUC to 0.22. These attacks reveal significant vulnerabilities of certain image-forensic classifiers.

2021-02-23
Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N..  2020.  An Analysis of Pre-installed Android Software. 2020 IEEE Symposium on Security and Privacy (SP). :1039—1055.

The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.

Mukhametov, D. R..  2020.  Self-organization of Network Communities via Blockchain Technology: Reputation Systems and Limits of Digital Democracy. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). :1—7.

The article is devoted to the analysis of the use of blockchain technology for self-organization of network communities. Network communities are characterized by the key role of trust in personal interactions, the need for repeated interactions, strong and weak ties within the network, social learning as the mechanism of self-organization. Therefore, in network communities reputation is the central component of social action, assessment of the situation, and formation of the expectations. The current proliferation of virtual network communities requires the development of appropriate technical infrastructure in the form of reputation systems - programs that provide calculation of network members reputation and organization of their cooperation and interaction. Traditional reputation systems have vulnerabilities in the field of information security and prevention of abusive behavior of agents. Overcoming these restrictions is possible through integration of reputation systems and blockchain technology that allows to increase transparency of reputation assessment system and prevent attempts of manipulation the system and social engineering. At the same time, the most promising is the use of blockchain-oracles to ensure communication between the algorithms of blockchain-based reputation system and the external information environment. The popularization of blockchain technology and its implementation in various spheres of social management, production control, economic exchange actualizes the problems of using digital technologies in political processes and their impact on the formation of digital authoritarianism, digital democracy and digital anarchism. The paper emphasizes that blockchain technology and reputation systems can equally benefit both the resources of government control and tools of democratization and public accountability to civil society or even practices of avoiding government. Therefore, it is important to take into account the problems of political institutionalization, path dependence and the creation of differentiated incentives as well as the technological aspects.

2021-02-22
Hirlekar, V. V., Kumar, A..  2020.  Natural Language Processing based Online Fake News Detection Challenges – A Detailed Review. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :748–754.
Online social media plays an important role during real world events such as natural calamities, elections, social movements etc. Since the social media usage has increased, fake news has grown. The social media is often used by modifying true news or creating fake news to spread misinformation. The creation and distribution of fake news poses major threats in several respects from a national security point of view. Hence Fake news identification becomes an essential goal for enhancing the trustworthiness of the information shared on online social network. Over the period of time many researcher has used different methods, algorithms, tools and techniques to identify fake news content from online social networks. The aim of this paper is to review and examine these methodologies, different tools, browser extensions and analyze the degree of output in question. In addition, this paper discuss the general approach of fake news detection as well as taxonomy of feature extraction which plays an important role to achieve maximum accuracy with the help of different Machine Learning and Natural Language Processing algorithms.
Lansley, M., Kapetanakis, S., Polatidis, N..  2020.  SEADer++ v2: Detecting Social Engineering Attacks using Natural Language Processing and Machine Learning. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–6.
Social engineering attacks are well known attacks in the cyberspace and relatively easy to try and implement because no technical knowledge is required. In various online environments such as business domains where customers talk through a chat service with employees or in social networks potential hackers can try to manipulate other people by employing social attacks against them to gain information that will benefit them in future attacks. Thus, we have used a number of natural language processing steps and a machine learning algorithm to identify potential attacks. The proposed method has been tested on a semi-synthetic dataset and it is shown to be both practical and effective.