Visible to the public Biblio

Filters: Keyword is Trustworthy Systems  [Clear All Filters]
2021-03-29
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

2020-04-13
Horne, Benjamin D., Gruppi, Mauricio, Adali, Sibel.  2019.  Trustworthy Misinformation Mitigation with Soft Information Nudging. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :245–254.

Research in combating misinformation reports many negative results: facts may not change minds, especially if they come from sources that are not trusted. Individuals can disregard and justify lies told by trusted sources. This problem is made even worse by social recommendation algorithms which help amplify conspiracy theories and information confirming one's own biases due to companies' efforts to optimize for clicks and watch time over individuals' own values and public good. As a result, more nuanced voices and facts are drowned out by a continuous erosion of trust in better information sources. Most misinformation mitigation techniques assume that discrediting, filtering, or demoting low veracity information will help news consumers make better information decisions. However, these negative results indicate that some news consumers, particularly extreme or conspiracy news consumers will not be helped. We argue that, given this background, technology solutions to combating misinformation should not simply seek facts or discredit bad news sources, but instead use more subtle nudges towards better information consumption. Repeated exposure to such nudges can help promote trust in better information sources and also improve societal outcomes in the long run. In this article, we will talk about technological solutions that can help us in developing such an approach, and introduce one such model called Trust Nudging.

Agostino Ardagna, Claudio, Asal, Rasool, Damiani, Ernesto, El Ioini, Nabil, Pahl, Claus.  2019.  Trustworthy IoT: An Evidence Collection Approach Based on Smart Contracts. 2019 IEEE International Conference on Services Computing (SCC). :46–50.
Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain.
Heiss, Jonathan, Eberhardt, Jacob, Tai, Stefan.  2019.  From Oracles to Trustworthy Data On-Chaining Systems. 2019 IEEE International Conference on Blockchain (Blockchain). :496–503.
Many blockchain transactions require blockchain-external data sources to provide data. Oracle systems have been proposed as a link between blockchains and blockchain-external resources. However, these Oracle systems vary greatly in assumptions and applicability and each system addresses the challenge of data on-chaining partly. We argue that Data On-chaining must be done in a trustworthy manner and, as a first contribution, define a set of key requirements for Trustworthy Data On-chaining. Further, we provide an in-depth assessment and comparison of state-of-the-art Oracle systems with regards to these requirements. This differentiation pinpoints the need for a uniform understanding of and directions for future research on Trustworthy Data On-chaining.
Mohanta, Bhabendu K., Panda, Soumyashree S., Satapathy, Utkalika, Jena, Debasish, Gountia, Debasis.  2019.  Trustworthy Management in Decentralized IoT Application using Blockchain. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Internet of Things (IoT) as per estimated will connect 50 billion devices by 2020. Since its evolution, IoT technology provides lots of flexibility to develop and implement any application. Most of the application improves the human living standard and also makes life easy to access and monitoring the things in real time. Though there exist some security and privacy issues in IoT system like authentication, computation, data modification, trust among users. In this paper, we have identified the IoT application like insurance, supply chain system, smart city and smart car where trust among associated users is an major issue. The current centralized system does not provide enough trust between users. Using Blockchain technology we have shown that trust issue among users can be managed in a decentralized way so that information can be traceable and identify/verify any time. Blockchain has properties like distributed, digitally share and immutable which enhance security. For Blockchain implementation, Ethereum platform is used.
Cai, Yang, Wang, Yuewu, Lei, Lingguang, Zhou, Quan.  2019.  ALTEE: Constructing Trustworthy Execution Environment for Mobile App Dynamically. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–7.
TEE(Trusted Execution Environment) has became one of the most popular security features for mobile platforms. Current TEE solutions usually implement secure functions in Trusted applications (TA) running over a trusted OS in the secure world. Host App may access these secure functions through the TEE driver. Unfortunately, such architecture is not very secure. A trusted OS has to be loaded in secure world to support TA running. Thus, the code size in secure world became large. As more and more TA is installed, the secure code size will be further larger and larger. Lots of real attack case have been reported [1]. In this paper, we present a novel TEE constructing method named ALTEE. Different from existing TEE solutions, ALTEE includes secure code in host app, and constructs a trustworthy execution environment for it dynamically whenever the code needs to be run.
Wang, Shaoyang, Lv, Tiejun, Zhang, Xuewei.  2019.  Multi-Agent Reinforcement Learning-Based User Pairing in Multi-Carrier NOMA Systems. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This paper investigates the problem of user pairing in multi-carrier non-orthogonal multiple access (MC-NOMA) systems. Firstly, the hard channel capacity and soft channel capacity are presented. The former depicts the transmission capability of the system that depends on the channel conditions, and the latter refers to the effective throughput of the system that is determined by the actual user demands. Then, two optimization problems to maximize the hard and soft channel capacities are established, respectively. Inspired by the multiagent deep reinforcement learning (MADRL) and convolutional neural network, the user paring network (UP-Net), based on the cooperative game and deep deterministic policy gradient, is designed for solving the optimization problems. Simulation results demonstrate that the performance of the designed UP-Net is comparable to that obtained from the exhaustive search method via the end-to-end low complexity method, which is superior to the common method, and corroborate that the UP-Net focuses more on the actual user demands to improve the soft channel capacity. Additionally and more importantly, the paper makes a useful exploration on the use of MADRL to solve the resource allocation problems in communication systems. Meanwhile, the design method has strong universality and can be easily extended to other issues.
Grissa, Mohamed, Yavuz, Attila A., Hamdaoui, Bechir.  2019.  TrustSAS: A Trustworthy Spectrum Access System for the 3.5 GHz CBRS Band. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :1495–1503.
As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SUs) and incumbent users. Despite its benefits, SAS's design requirements, as set by FCC, present privacy risks to SUs, merely because SUs are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC's regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SUs' privacy issues in an operational SAS environment.
Brito, Andrey, Brasileiro, Francisco, Blanquer, Ignacio, Silva, Altigran, Carvalho, André.  2019.  ATMOSPHERE: Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-Assuring, Hybrid Ecosystem for Resilient Cloud Computing. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–4.
This paper describes the goals of the ATMOSPHERE project, which is a multi-institutional research and development (R&D) effort aiming at designing and implementing a framework and platform to develop, build, deploy, measure and evolve trustworthy, cloud-enabled applications. The proposed system addresses the federation of geographically distributed cloud computing providers that rely on lightweight virtualization, and provide access to heterogeneous sets of resources. In addition, the system also considers both classic trustworthiness properties from the systems community, such as dependability and security, and from the machine learning community, such as fairness and transparency. We present the architecture that has been proposed to address these challenges and discuss some preliminary results.
R P, Jagadeesh Chandra Bose, Singi, Kapil, Kaulgud, Vikrant, Phokela, Kanchanjot Kaur, Podder, Sanjay.  2019.  Framework for Trustworthy Software Development. 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). :45–48.
Intelligent software applications are becoming ubiquitous and pervasive affecting various aspects of our lives and livelihoods. At the same time, the risks to which these systems expose the organizations and end users are growing dramatically. Trustworthiness of software applications is becoming a paramount necessity. Trust is to be regarded as a first-class citizen in the total product life cycle and should be addressed across all stages of software development. Trust can be looked at from two facets: one at an algorithmic level (e.g., bias-free, discrimination-aware, explainable and interpretable techniques) and the other at a process level by making development processes more transparent, auditable, and adhering to regulations and best practices. In this paper, we address the latter and propose a blockchain enabled governance framework for building trustworthy software. Our framework supports the recording, monitoring, and analysis of various activities throughout the application development life cycle thereby bringing in transparency and auditability. It facilitates the specification of regulations and best practices and verifies for its adherence raising alerts of non-compliance and prescribes remedial measures.
2020-02-10
Wan, Shengye, Sun, Jianhua, Sun, Kun, Zhang, Ning, Li, Qi.  2019.  SATIN: A Secure and Trustworthy Asynchronous Introspection on Multi-Core ARM Processors. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :289–301.

On ARM processors with TrustZone security extension, asynchronous introspection mechanisms have been developed in the secure world to detect security policy violations in the normal world. These mechanisms provide security protection via passively checking the normal world snapshot. However, since previous secure world checking solutions require to suspend the entire rich OS, asynchronous introspection has not been widely adopted in the real world. Given a multi-core ARM system that can execute the two worlds simultaneously on different cores, secure world introspection can check the rich OS without suspension. However, we identify a new normal-world evasion attack that can defeat the asynchronous introspection by removing the attacking traces in parallel from one core when the security checking is performing on another core. We perform a systematic study on this attack and present its efficiency against existing asynchronous introspection mechanisms. As the countermeasure, we propose a secure and trustworthy asynchronous introspection mechanism called SATIN, which can efficiently detect the evasion attacks by increasing the attackers' evasion time cost and decreasing the defender's execution time under a safe limit. We implement a prototype on an ARM development board and the experimental results show that SATIN can effectively prevent evasion attacks on multi-core systems with a minor system overhead.

2019-02-08
Chen, Alexander B., Behl, Madhur, Goodall, Jonathan L..  2018.  Trust Me, My Neighbors Say It's Raining Outside: Ensuring Data Trustworthiness for Crowdsourced Weather Stations. Proceedings of the 5th Conference on Systems for Built Environments. :25-28.

Decision making in utilities, municipal, and energy companies depends on accurate and trustworthy weather information and predictions. Recently, crowdsourced personal weather stations (PWS) are being increasingly used to provide a higher spatial and temporal resolution of weather measurements. However, tools and methods to ensure the trustworthiness of the crowdsourced data in real-time are lacking. In this paper, we present a Reputation System for Crowdsourced Rainfall Networks (RSCRN) to assign trust scores to personal weather stations in a region. Using real PWS data from the Weather Underground service in the high flood risk region of Norfolk, Virginia, we evaluate the performance of the proposed RSCRN. The proposed method is able to converge to a confident trust score for a PWS within 10–20 observations after installation. Collectively, the results indicate that the trust score derived from the RSCRN can reflect the collective measure of trustworthiness to the PWS, ensuring both useful and trustworthy data for modeling and decision-making in the future.

Palotti, Joao, Zuccon, Guido, Hanbury, Allan.  2018.  MM: A New Framework for Multidimensional Evaluation of Search Engines. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1699-1702.

In this paper, we proposed a framework to evaluate information retrieval systems in presence of multidimensional relevance. This is an important problem in tasks such as consumer health search, where the understandability and trustworthiness of information greatly influence people's decisions based on the search engine results, but common topicality-only evaluation measures ignore these aspects. We used synthetic and real data to compare our proposed framework, named MM, to the understandability-biased information evaluation (UBIRE), an existing framework used in the context of consumer health search. We showed how the proposed approach diverges from the UBIRE framework, and how MM can be used to better understand the trade-offs between topical relevance and the other relevance dimensions.

Jensen, Theodore, Albayram, Yusuf, Khan, Mohammad Maifi Hasan, Buck, Ross, Coman, Emil, Fahim, Md Abdullah Al.  2018.  Initial Trustworthiness Perceptions of a Drone System Based on Performance and Process Information. Proceedings of the 6th International Conference on Human-Agent Interaction. :229-237.

Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.

Innerbichler, Johannes, Damjanovic-Behrendt, Violeta.  2018.  Federated Byzantine Agreement to Ensure Trustworthiness of Digital Manufacturing Platforms. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :111-116.

In this paper, we explore the use of the Stellar Consensus Protocol (SCP) and its Federated Byzantine Agreement (FBA) algorithm for ensuring trust and reputation between federated, cloud-based platform instances (nodes) and their participants. Our approach is grounded on federated consensus mechanisms, which promise data quality managed through computational trust and data replication, without a centralized authority. We perform our experimentation on the ground of the NIMBLE cloud manufacturing platform, which is designed to support growth of B2B digital manufacturing communities and their businesses through federated platform services, managed by peer-to-peer networks. We discuss the message exchange flow between the NIMBLE application logic and Stellar consensus logic.

Jaigirdar, Fariha Tasmin.  2018.  Trust Based Security Solution for Internet of Things Healthcare Solution: An End-to-End Trustworthy Architecture. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. :1757-1760.

With the vision of building "A Smart World", Internet of Things (IoT) plays a crucial role where users, computing systems and objects with sensing and actuating capabilities cooperate with unparalleled convenience. Among many applications of IoT, healthcare is the most emerging in today's scenario, as new technological advancement creates opportunity for early detection of illnesses, quick decision generation and even aftercare monitoring. Nowadays, it has become a reality for many patients to be monitored remotely, overcoming traditional logistical obstacles. However, these e-health applications increase the concerns of security, privacy, and integrity of medical data. For secured transmission in IoT healthcare, data that has been gathered from sensors in a patient's body area network needs to be sent to the end user and might need to be aggregated, visualized and/or evaluated before being presented. Here, trust is critical. Therefore, an end-to-end trustworthy system architecture can guarantee the reliable transmission of a patient's data and confirms the success of IoT Healthcare application.

Cui, S., Asghar, M. R., Russello, G..  2018.  Towards Blockchain-Based Scalable and Trustworthy File Sharing. 2018 27th International Conference on Computer Communication and Networks (ICCCN). :1-2.

In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.

Ivanova, M., Durcheva, M., Baneres, D., Rodríguez, M. E..  2018.  eAssessment by Using a Trustworthy System in Blended and Online Institutions. 2018 17th International Conference on Information Technology Based Higher Education and Training (ITHET). :1-7.

eAssessment uses technology to support online evaluation of students' knowledge and skills. However, challenging problems must be addressed such as trustworthiness among students and teachers in blended and online settings. The TeSLA system proposes an innovative solution to guarantee correct authentication of students and to prove the authorship of their assessment tasks. Technologically, the system is based on the integration of five instruments: face recognition, voice recognition, keystroke dynamics, forensic analysis, and plagiarism. The paper aims to analyze and compare the results achieved after the second pilot performed in an online and a blended university revealing the realization of trust-driven solutions for eAssessment.

Cao, R., Wong, T. F., Gao, H., Wang, D., Lu, Y..  2018.  Blind Channel Direction Separation Against Pilot Spoofing Attack in Massive MIMO System. 2018 26th European Signal Processing Conference (EUSIPCO). :2559-2563.

This paper considers a pilot spoofing attack scenario in a massive MIMO system. A malicious user tries to disturb the channel estimation process by sending interference symbols to the base-station (BS) via the uplink. Another legitimate user counters by sending random symbols. The BS does not possess any partial channel state information (CSI) and distribution of symbols sent by malicious user a priori. For such scenario, this paper aims to separate the channel directions from the legitimate and malicious users to the BS, respectively. A blind channel separation algorithm based on estimating the characteristic function of the distribution of the signal space vector is proposed. Simulation results show that the proposed algorithm provides good channel separation performance in a typical massive MIMO system.

Ioini, N. E., Pahl, C..  2018.  Trustworthy Orchestration of Container Based Edge Computing Using Permissioned Blockchain. 2018 Fifth International Conference on Internet of Things: Systems, Management and Security. :147-154.

The need to process the verity, volume and velocity of data generated by today's Internet of Things (IoT) devices has pushed both academia and the industry to investigate new architectural alternatives to support the new challenges. As a result, Edge Computing (EC) has emerged to address these issues, by placing part of the cloud resources (e.g., computation, storage, logic) closer to the edge of the network, which allows faster and context dependent data analysis and storage. However, as EC infrastructures grow, different providers who do not necessarily trust each other need to collaborate in order serve different IoT devices. In this context, EC infrastructures, IoT devices and the data transiting the network all need to be subject to identity and provenance checks, in order to increase trust and accountability. Each device/data in the network needs to be identified and the provenance of its actions needs to be tracked. In this paper, we propose a blockchain container based architecture that implements the W3C-PROV Data Model, to track identities and provenance of all orchestration decisions of a business network. This architecture provides new forms of interaction between the different stakeholders, which supports trustworthy transactions and leads to a new decentralized interaction model for IoT based applications.

2018-02-02
Härtig, H., Roitzsch, M., Weinhold, C., Lackorzynski, A..  2017.  Lateral Thinking for Trustworthy Apps. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1890–1899.

The growing computerization of critical infrastructure as well as the pervasiveness of computing in everyday life has led to increased interest in secure application development. We observe a flurry of new security technologies like ARM TrustZone and Intel SGX, but a lack of a corresponding architectural vision. We are convinced that point solutions are not sufficient to address the overall challenge of secure system design. In this paper, we outline our take on a trusted component ecosystem of small individual building blocks with strong isolation. In our view, applications should no longer be designed as massive stacks of vertically layered frameworks, but instead as horizontal aggregates of mutually isolated components that collaborate across machine boundaries to provide a service. Lateral thinking is needed to make secure systems going forward.

Mirkhanzadeh, B., Shao, C., Shakeri, A., Sato, T., Razo-Razo, M., Tacca, M., Fumagalli, A., Yamanaka, N..  2017.  A two-layer network Orchestrator offering trustworthy connectivity to a ROS-industrial application. 2017 19th International Conference on Transparent Optical Networks (ICTON). :1–4.

This paper describes an experiment carried out to demonstrate robustness and trustworthiness of an orchestrated two-layer network test-bed (PROnet). A Robotic Operating System Industrial (ROS-I) distributed application makes use of end-to-end flow services offered by PROnet. The PROnet Orchestrator is used to provision reliable end-to-end Ethernet flows to support the ROS-I application required data exchange. For maximum reliability, the Orchestrator provisions network resource redundancy at both layers, i.e., Ethernet and optical. Experimental results show that the robotic application is not interrupted by a fiber outage.

You, J., Shangguan, J., Sun, Y., Wang, Y..  2017.  Improved trustworthiness judgment in open networks. 2017 International Smart Cities Conference (ISC2). :1–2.

The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.

Sprabery, R., Estrada, Z. J., Kalbarczyk, Z., Iyer, R., Bobba, R. B., Campbell, R..  2017.  Trustworthy Services Built on Event-Based Probing for Layered Defense. 2017 IEEE International Conference on Cloud Engineering (IC2E). :215–225.

Numerous event-based probing methods exist for cloud computing environments allowing a hypervisor to gain insight into guest activities. Such event-based probing has been shown to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit detectors before a system can be patched, among others. Here, we illustrate how to use such probing for trustworthy logging and highlight some of the challenges that existing event-based probing mechanisms do not address. Challenges include ensuring a probe inserted at given address is trustworthy despite the lack of attestation available for probes that have been inserted dynamically. We show how probes can be inserted to ensure proper logging of every invocation of a probed instruction. When combined with attested boot of the hypervisor and guest machines, we can ensure the output stream of monitored events is trustworthy. Using these techniques we build a trustworthy log of certain guest-system-call events. The log powers a cloud-tuned Intrusion Detection System (IDS). New event types are identified that must be added to existing probing systems to ensure attempts to circumvent probes within the guest appear in the log. We highlight the overhead penalties paid by guests to increase guarantees of log completeness when faced with attacks on the guest kernel. Promising results (less that 10% for guests) are shown when a guest relaxes the trade-off between log completeness and overhead. Our demonstrative IDS detects common attack scenarios with simple policies built using our guest behavior recording system.

Kochte, M. A., Baranowski, R., Wunderlich, H. J..  2017.  Trustworthy reconfigurable access to on-chip infrastructure. 2017 International Test Conference in Asia (ITC-Asia). :119–124.

The accessibility of on-chip embedded infrastructure for test, reconfiguration, or debug poses a serious security problem. Access mechanisms based on IEEE Std 1149.1 (JTAG), and especially reconfigurable scan networks (RSNs), as allowed by IEEE Std 1500, IEEE Std 1149.1-2013, and IEEE Std 1687 (IJTAG), require special care in the design and development. This work studies the threats to trustworthy data transmission in RSNs posed by untrusted components within the RSN and external interfaces. We propose a novel scan pattern generation method that finds trustworthy access sequences to prevent sniffing and spoofing of transmitted data in the RSN. For insecure RSNs, for which such accesses do not exist, we present an automated transformation that improves the security and trustworthiness while preserving the accessibility to attached instruments. The area overhead is reduced based on results from trustworthy access pattern generation. As a result, sensitive data is not exposed to untrusted components in the RSN, and compromised data cannot be injected during trustworthy accesses.