Visible to the public Biblio

Filters: Keyword is Magnetometers  [Clear All Filters]
2021-01-25
Zhang, J., Ji, X., Xu, W., Chen, Y.-C., Tang, Y., Qu, G..  2020.  MagView: A Distributed Magnetic Covert Channel via Video Encoding and Decoding. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :357—366.

Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.

2020-11-30
Anyfantis, D. I., Sarigiannidou, E., Rapenne, L., Stamatelatos, A., Ntemogiannis, D., Kapaklis, V., Poulopoulos, P..  2019.  Unexpected Development of Perpendicular Magnetic Anisotropy in Ni/NiO Multilayers After Mild Thermal Annealing. IEEE Magnetics Letters. 10:1–5.
We report on the significant enhancement of perpendicular magnetic anisotropy of Ni/NiO multilayers after mild annealing up to 90 min at 250 °C. Transmission electron microscopy shows that after annealing, a partial crystallization of the initially amorphous NiO layers occurs. This turns out to be the source of the anisotropy enhancement. Magnetic measurements reveal that even multilayers with Ni layers as thick as 7 nm, which in the as-deposited state showed inplane anisotropy with square hysteresis loops, show reduced in-plane remanence after thermal treatment. Hysteresis loops recorded with the field in the normal-to-film-plane direction provide evidence for perpendicular magnetic anisotropy with up and down magnetic domains at remanence. A plot of effective uniaxial magnetic anisotropy constant times individual Ni layer thickness as a function of individual Ni layer thickness shows a large change in the slope of the data attributed to a drastic change of volume anisotropy. Surface anisotropy showed a small decrease because of some layer roughening introduced by annealing.
2019-09-30
Elbidweihy, H., Arrott, A. S., Provenzano, V..  2018.  Modeling the Role of the Buildup of Magnetic Charges in Low Anisotropy Polycrystalline Materials. IEEE Transactions on Magnetics. 54:1–5.

A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.

2018-05-16
Liao, J., Vallobra, P., Petit, D., Vemulkar, T., O'Brien, L., Malinowski, G., Hehn, M., Mangin, S., Cowburn, R..  2017.  All-optical switching behaviours in synthetic ferrimagnetic heterostructures with different ferromagnetic-layer Curie temperatures. 2017 IEEE International Magnetics Conference (INTERMAG). :1–1.
Summary form only given. All-optical switching (AOS) has been observed in ferromagnetic (FM) layers and synthetic ferrimagnetic heterostructures [1-4]. In this work, we use anomalous Hall effect (AHE) measurements to demonstrate controlled helicity-dependent switching in synthetic ferrimagnetic heterostructures. The two FM layers are engineered to have different Curie temperatures Tc1 (fixed) and Tc2 (variable). We show that irrespective of whether Tc2 is higher or lower than Tc1, the final magnetic configuration of the heterostructure is controlled by using the laser polarization to set the magnetic state of the FM layer with the highest Tc. All samples were grown on glass substrates at room temperature by DC magnetron sputtering. Two sets of samples were prepared. The first set are single FM layers with layer composition Ta (3 nm)/Pt (4 nm)/FM1(2)/Pt capping (4 nm), where FM1 = Co (0.6 nm) is a Co layer and FM2 = CoFeB (tCoFeB)/Pt(0.4 nm)/ CoFeB (tCoFeB) (0.2 ≤ tCoFeB ≤ 0.6 nm) is a composite CoFeB layer where both CoFeB layers are ferromagnetically coupled and act as a single layer. FM1 and FM2 were used to produce the second set of synthetic ferrimagnetic samples with layer structure Ta (3 nm)/Pt (4 nm)/FM1/Pt (0.4 nm)/Ru (0.9 nm)/Pt (0.4 nm)/FM2/Pt capping (4 nm). The Ru layer provides the antiferromagnetic RKKY interlayer exchange coupling between the adjacent FM1 and FM2 layers while the Pt layers on either side of the Ru layer can tune the strength of the coupling and stabilize their perpendicular anisotropy [5]. To study the AOS, we use a Ti: sapphire fs-laser with a wavelength of 800 nm and a pulse duration of 43 fs. A quarter-wave plate is used to create a circularly polarized [right(σ+) and left-handed (σ-)] beam. We first measured the magnetic properties of the FM1 and FM2 layers using vibrating sample magnetometry (VSM). All FM samples show full remanence in perpendicular hyst- resis loops at room temperature (not shown). The temperature-dependent magnetization scans (not shown) give a Curie temperature Tc1 of 524 K for FM1. For FM2, increasing tCoFeB increases its Curie temperatureTc2. At tCoFeB = 0.5 nm, Tc2 - Tc1. Hall crosses are patterned by optical lithography and ion milling. The width of the current carrying wire is - 5 um, giving a DC current density of - 6 x 109 A/m2 during the measurement. Figure 1(a) shows the resulting perpendicular Hall hysteresis loop of the synthetic ferrimagnetic sample with tCoFeB = 0.2 nm. At remanence, the stable magnetic configurations are the two antiparallel orientations of FM1 and FM2 [State I and II in Fig. 1(a)]. To study the AOS, we swept the laser beam with a power of 0.45 mW and a speed of 1 μm/sec across the Hall cross, and the corresponding Hall voltage was constantly monitored. In Fig. 1(b), we show the normalized Hall voltage, VHall, as a function of the laser beam position x for both beam polarizations σ+ and σ-. The initial magnetic configuration was State I. When the beam is at the center of the cross (position B), both beam polarizations give VHall - 0. As the beam leaves the cross (position C), the σbeam changes the magnetic configurations from State I to State II (FM1 magnetization pointing down), while the system reverts to State I using the σ+ beam. Changing the initial configuration from State I to State II results in the same final magnetic configurations, determined by the laser beam polarizations (not shown). Similar results (not shown) were obtained for samples with tCoFeB ≤ 0.4 nm. However, at tCoFeB = 0.6 nm, the σbeam results in the final magnetic configurations with FM2 magnetization pointing down (State I) and the σ+ beam results in the State II configuration, suggesting that the final state is determined by the beam polar
Ciovati, G., Cheng, G., Drury, M., Fischer, J., Geng, R..  2017.  Impact of Remanent Magnetic Field on the Heat Load of Original CEBAF Cryomodule. IEEE Transactions on Applied Superconductivity. 27:1–6.

The heat load of the original cryomodules for the continuous electron beam accelerator facility is 50% higher than the target value of 100 W at 2.07 K for refurbished cavities operating at an accelerating gradient of 12.5 MV/m. This issue is due to the quality factor of the cavities being 50% lower in the cryomodule than when tested in a vertical cryostat, even at low RF field. Previous studies were not conclusive about the origin of the additional losses. We present the results of a systematic study of the additional losses in a five-cell cavity from a decommissioned cryomodule after attaching components, which are part of the cryomodule, such as the cold tuner, the He tank, and the cold magnetic shield, prior to cryogenic testing in a vertical cryostat. Flux-gate magnetometers and temperature sensors are used as diagnostic elements. Different cool-down procedures and tests in different residual magnetic fields were investigated during the study. Three flux-gate magnetometers attached to one of the cavities installed in the refurbished cryomodule C50-12 confirmed the hypothesis of high residual magnetic field as a major cause for the increased RF losses.

2018-02-21
Alrawi, H. N., Ismail, W..  2017.  Enhancing magnetic IEDs detection method utilizes an AMR-based magnetic field sensor. 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). :1–4.

Due to its low cost and availability, magnetic sensors nowadays are often incorporated into security systems to detect or localize threats. This paper, with the help of a correlated pre-published work, describes preliminary steps to ensure reliable results that could help in reducing inaccuracies/ errors in case of considering a security system that detects Magnetic IEDs employing AMR-based magnetic field sensors.