Visible to the public Biblio

Found 5947 results

Filters: Keyword is Resiliency  [Clear All Filters]
2020-07-13
Xiao, Yonggang, Liu, Yanbing.  2019.  BayesTrust and VehicleRank: Constructing an Implicit Web of Trust in VANET. IEEE Transactions on Vehicular Technology. 68:2850–2864.
As Vehicular Ad hoc Network (VANET) features random topology and accommodates freely connected nodes, it is important that the cooperation among the nodes exists. This paper proposes a trust model called Implicit Web of Trust in VANET (IWOT-V) to reason out the trustworthiness of vehicles. Such that untrusted nodes can be identified and avoided when we make a decision regarding whom to follow or cooperate with. Furthermore, the performance of Cooperative Intelligent Transport System (C-ITS) applications improves. The idea of IWOT-V is mainly inspired by web page ranking algorithms such as PageRank. Although there does not exist explicit link structure in VANET because of random topology and dynamic connections, social trust relationship among vehicles exists and an implicit web of trust can be derived. To accomplish the derivation, two algorithms are presented, i.e., BayesTrust and VehicleRank. They are responsible for deriving the local and global trust relationships, respectively. The simulation results show that IWOT-V can accurately identify trusted and untrusted nodes if enough local trust information is collected. The performance of IWOT-V affected by five threat models is demonstrated, and the related discussions are also given.
Grüner, Andreas, Mühle, Alexander, Meinel, Christoph.  2019.  Using Probabilistic Attribute Aggregation for Increasing Trust in Attribute Assurance. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :633–640.
Identity management is an essential cornerstone of securing online services. Service provisioning relies on correct and valid attributes of a digital identity. Therefore, the identity provider is a trusted third party with a specific trust requirement towards a verified attribute supply. This trust demand implies a significant dependency on users and service providers. We propose a novel attribute aggregation method to reduce the reliance on one identity provider. Trust in an attribute is modelled as a combined assurance of several identity providers based on probability distributions. We formally describe the proposed aggregation model. The resulting trust model is implemented in a gateway that is used for authentication with self-sovereign identity solutions. Thereby, we devise a service provider specific web of trust that constitutes an intermediate approach bridging a global hierarchical model and a locally decentralized peer to peer scheme.
Agrawal, Shriyansh, Sanagavarapu, Lalit Mohan, Reddy, YR.  2019.  FACT - Fine grained Assessment of web page CredibiliTy. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :1088–1097.
With more than a trillion web pages, there is a plethora of content available for consumption. Search Engine queries invariably lead to overwhelming information, parts of it relevant and some others irrelevant. Often the information provided can be conflicting, ambiguous, and inconsistent contributing to the loss of credibility of the content. In the past, researchers have proposed approaches for credibility assessment and enumerated factors influencing the credibility of web pages. In this work, we detailed a WEBCred framework for automated genre-aware credibility assessment of web pages. We developed a tool based on the proposed framework to extract web page features instances and identify genre a web page belongs to while assessing it's Genre Credibility Score ( GCS). We validated our approach on `Information Security' dataset of 8,550 URLs with 171 features across 7 genres. The supervised learning algorithm, Gradient Boosted Decision Tree classified genres with 88.75% testing accuracy over 10 fold cross-validation, an improvement over the current benchmark. We also examined our approach on `Health' domain web pages and had comparable results. The calculated GCS correlated 69% with crowdsourced Web Of Trust ( WOT) score and 13% with algorithm based Alexa ranking across 5 Information security groups. This variance in correlation states that our GCS approach aligns with human way ( WOT) as compared to algorithmic way (Alexa) of web assessment in both the experiments.
Paschalides, Demetris, Christodoulou, Chrysovalantis, Andreou, Rafael, Pallis, George, Dikaiakos, Marios D., Kornilakis, Alexandros, Markatos, Evangelos.  2019.  Check-It: A plugin for Detecting and Reducing the Spread of Fake News and Misinformation on the Web. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :298–302.
Over the past few years, we have been witnessing the rise of misinformation on the Internet. People fall victims of fake news continuously, and contribute to their propagation knowingly or inadvertently. Many recent efforts seek to reduce the damage caused by fake news by identifying them automatically with artificial intelligence techniques, using signals from domain flag-lists, online social networks, etc. In this work, we present Check-It, a system that combines a variety of signals into a pipeline for fake news identification. Check-It is developed as a web browser plugin with the objective of efficient and timely fake news detection, while respecting user privacy. In this paper, we present the design, implementation and performance evaluation of Check-It. Experimental results show that it outperforms state-of-the-art methods on commonly-used datasets.
Hepp, Thomas, Spaeh, Fabian, Schoenhals, Alexander, Ehret, Philip, Gipp, Bela.  2019.  Exploring Potentials and Challenges of Blockchain-based Public Key Infrastructures. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :847–852.
Traditional public key infrastructures (PKIs), in particular, X.509 and PGP, is plagued by security and usability issues. As reoccurring incidents show, these are not only of theoretical nature but allow attackers to inflict severe damage. Emerging blockchain technology allows for advances in this area, facilitating a trustless immutable ledger with fast consensus. There have been numerous proposals for utilization of the blockchain in the area of PKI, either as extensions upon existing methods or independent solutions. In this paper, we first study traditional PKI, then proceed with novel approaches, showing how they can improve upon recent issues. We provide a comprehensive evaluation, finding that independent blockchain-based solutions are preferable in the future, mainly due to their stronger security. However, global adoption of these yet requires advances in blockchain development, e.g., concerning scalability.
Kurbatov, Oleksandr, Shapoval, Oleksiy, Poluyanenko, Nikolay, Kuznetsova, Tetiana, Kravchenko, Pavel.  2019.  Decentralized Identification and Certification System. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :507–510.
This article describes an approach to identification and certification in decentralized environment. The protocol proposes a way of integration for blockchain technology and web-of-trust concept to create decentralized public key infrastructure with flexible management for user identificators. Besides changing the current public key infrastructure, this system can be used in the Internet of Things (IoT). Each individual IoT sensor must correctly communicate with other components of the system it's in. To provide safe interaction, components should exchange encrypted messages with ability to check their integrity and authenticity, which is presented by this scheme.
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
Lee, Yong Up, Kang, Kyeong-Yoon, Choi, Ginkyu.  2019.  Secure Visible Light Encryption Communication Technique for Smart Home Service. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0827–0831.
For the security enhancement of the conventional visible light (VL) communication which allows the easy intrusion by adjacent adversary due to visible signal characteristic, the VL communication technique based on the asymmetric Rivest-Shamir-Adleman (RSA) encryption method is proposed for smart indoor service in this paper, and the optimal key length of the RSA encryption process for secure VL communication technique is investigated, and also the error performance dependent on the various asymmetric encryption key is analyzed for the performance evaluation of the proposed technique. Then we could see that the VL communication technique based on the RSA encryption gives the similar RMSE performance independent of the length of the public or private key and provides the better error performance as the signal to noise ratio (SNR) increases.
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
Wu, Xiaoge, Zhang, Lin.  2019.  Chaos-based Information Rotated Polar Coding Scheme for Visible Light Wiretap Channel. 2019 International Conference on Computing, Networking and Communications (ICNC). :864–868.
In this paper, we present a chaos-based information rotated polar coding scheme for enhancing the reliability and security of visible light communication (VLC) systems. In our scheme, we rotate the original information, wherein the rotation principle is determined by two chaotic sequences. Then the rotated information is encoded by secure polar coding scheme. After the channel polarization achieved by the polar coding, we could identify the bit-channels providing good transmission conditions for legitimate users and the bit-channels with bad conditions for eavesdroppers. Simulations are performed over the visible light wiretap channel. The results demonstrate that compared with existing schemes, the proposed scheme can achieve better reliability and security even when the eavesdroppers have better channel conditions.
Manaka, Keisuke, Chen, Liyuan, Habuchi, Hiromasa, Kozawa, Yusuke.  2019.  Proposal of Equal-Weight (2, 2) Visual Secret Sharing Scheme on VN-CSK Illumination Light Communication. 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :1–5.
Variable N-parallel code-shift-keying (VN-CSK) system has been proposed for solving the dimming control problem and the adjacent illumination light interference in illumination light communication. VN-CSK system only focuses on separating the light signal in the illumination light overlapping area. While, it is considerable to transmit a new data using the light overlapping. Visual secret sharing (VSS) scheme is a kind of secret sharing scheme, which distributes the secret data for security and restore by overlapping. It has high affinity to visible light communication. In this paper, a system combined with visible light communication and (2,2)-VSS scheme is proposed. In the proposed system, a modified pseudo orthogonal M-sequence is used that the occurrence probability of 0 and 1 of share is one-half in order to achieve a constant illuminance. In addition, this system use Modified Pseudo-Orthogonal M-sequence(MPOM) for ensuring the lighting function. The bit error rate performance of the proposed system is evaluated under the indoor visible light communication channel by simulation.
Abuella, Hisham, Ekin, Sabit.  2019.  A New Paradigm for Non-contact Vitals Monitoring using Visible Light Sensing. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–2.
Typical techniques for tracking vital signs require body contact and most of these techniques are intrusive in nature. Body-contact methods might irritate the patient's skin and he/she might feel uncomfortable while sensors are touching his/her body. In this study, we present a new wireless (non-contact) method for monitoring human vital signs (breathing and heartbeat). We have demonstrated for the first time1 that vitals signs can be measured wirelessly through visible light signal reflected from a human subject, also referred to as visible light sensing (VLS). In this method, the breathing and heartbeat rates are measured without any body-contact device, using only a simple photodetector and a light source (e.g., LED). The light signal reflected from human subject is modulated by the physical motions during breathing and heartbeats. Signal processing tools such as filtering and Fourier transform are used to convert these small variations in the received light signal power to vitals data.We implemented the VLS-based non-contact vital signs monitoring system by using an off-the-shelf light source, a photodetector and a signal acquisition and processing unit. We observed more than 94% of accuracy as compared to a contact-based FDA (The Food and Drug Administration) approved devices. Additional evaluations are planned to assess the performance of the developed vitals monitoring system, e.g., different subjects, environments, etc. Non-contact vitals monitoring system can be used in various areas and scenarios such as medical facilities, residential homes, security and human-computer-interaction (HCI) applications.
Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
Almohanna, S., Alogayyel, M. S., Ajaji, A. A., Alkhdrawi, H. A., Alleli, M. A., Tareq, Q., Mukhtar, Sani, Mohammed Khan, Z. M..  2019.  Visible-NIR Laser Based Bi-directional Indoor Optical Wireless Communication. 2019 IEEE 10th GCC Conference Exhibition (GCC). :1–4.
We propose and demonstrate an indoor optical bi-directional communication system employing near-infrared (NIR) and visible light as carriers. Such a communication technology is attractive wherein red color could be deployed for down streaming purpose via, for instance, LiFi (light fidelity) system, and NIR color for up streaming purpose. This system concept is implemented over a simultaneous bidirectional audio signal transmission and reception over 0.6m indoor wireless channel. Besides, designing the transceiver circuits from off the shelf components, frequency scrambling encryption and decryption technique is also integrated in the system for security purpose. The communication system is optically characterized in terms of line-of-sight laser misalignment and communication distance.
Tian, Dinghui, Zhang, Wensheng, Sun, Jian, Wang, Cheng-Xiang.  2019.  Physical-Layer Security of Visible Light Communications with Jamming. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :512–517.
Visible light communication (VLC) is a burgeoning field in wireless communications as it considers illumination and communication simultaneously. The broadcast nature of VLC makes it necessary to consider the security of underlying transmissions. A physical-layer security (PLS) scheme by introducing jamming LEDs is considered in this paper. The secrecy rate of an indoor VLC system with multiple LEDs, one legitimate receiver, and multiple eavesdroppers is investigated. Three distributions of input signal are assumed, i.e., truncated generalized normal distribution (TGN), uniform distribution, and exponential distribution. The results show that jamming can improve the secrecy performance efficiently. This paper also demonstrates that when the numbers of LEDs transmitting information-bearing signal and jamming signal are equal, the average secrecy rate can be maximized.
Inn, Arba’iah, Hassan, Rosilah, Mohd Aman, Azana Hafizah, Abdul Latiff, Liza.  2019.  Framework for Handover process using Visible Light Communications in 5G. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–4.
Internet of Things (IoT) revolution in 5th Generation (5G) will dynamically support all user, devices and customer worldwide where these devices, mechanical and digital machines will be connected and are able to communicate and transfer data over the network. In industries, the evolution of these technologies, known as Industrial IoT (IIoT) will enable machines to be connected and communicate where else, Internet of Everything (IoE) makes the connection more relevant between all smart devices, machines and also people with a huge data, high speed and high security. The growth of these technologies has made Radio Frequency (RF) spectrum resources for wireless communication to be more saturated. In order to solve this problem, new wireless communication technologies are proposed to meet the demand and also to enhance the performance of the system and overcome the existing bandwidth limitations. Studies done shows that Light-Fidelity (Li-Fi), based on Visible Light Communications (VLC) is one of the most promising technology in future which is based on optical wireless communication. Initial study on the Li-Fi concept has focuses on achieving speed, bi-directional transmission concept and supports multiuser access. In this paper we propose a frame work focuses on the handover process for indoor environment by using the steerable Access Point (AP) and compare the output result with fix Access Point.
Andrew, J., Karthikeyan, J., Jebastin, Jeffy.  2019.  Privacy Preserving Big Data Publication On Cloud Using Mondrian Anonymization Techniques and Deep Neural Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :722–727.
In recent trends, privacy preservation is the most predominant factor, on big data analytics and cloud computing. Every organization collects personal data from the users actively or passively. Publishing this data for research and other analytics without removing Personally Identifiable Information (PII) will lead to the privacy breach. Existing anonymization techniques are failing to maintain the balance between data privacy and data utility. In order to provide a trade-off between the privacy of the users and data utility, a Mondrian based k-anonymity approach is proposed. To protect the privacy of high-dimensional data Deep Neural Network (DNN) based framework is proposed. The experimental result shows that the proposed approach mitigates the information loss of the data without compromising privacy.
Fan, Wenjun, Ziembicka, Joanna, de Lemos, Rogério, Chadwick, David, Di Cerbo, Francesco, Sajjad, Ali, Wang, Xiao-Si, Herwono, Ian.  2019.  Enabling Privacy-Preserving Sharing of Cyber Threat Information in the Cloud. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–80.
Network threats often come from multiple sources and affect a variety of domains. Collaborative sharing and analysis of Cyber Threat Information (CTI) can greatly improve the prediction and prevention of cyber-attacks. However, CTI data containing sensitive and confidential information can cause privacy exposure and disclose security risks, which will deter organisations from sharing their CTI data. To address these concerns, the consortium of the EU H2020 project entitled Collaborative and Confidential Information Sharing and Analysis for Cyber Protection (C3ISP) has designed and implemented a framework (i.e. C3ISP Framework) as a service for cyber threat management. This paper focuses on the design and development of an API Gateway, which provides a bridge between end-users and their data sources, and the C3ISP Framework. It facilitates end-users to retrieve their CTI data, regulate data sharing agreements in order to sanitise the data, share the data with privacy-preserving means, and invoke collaborative analysis for attack prediction and prevention. In this paper, we report on the implementation of the API Gateway and experiments performed. The results of these experiments show the efficiency of our gateway design, and the benefits for the end-users who use it to access the C3ISP Framework.
Li, Tao, Ren, Yongzhen, Ren, Yongjun, Wang, Lina, Wang, Lingyun, Wang, Lei.  2019.  NMF-Based Privacy-Preserving Collaborative Filtering on Cloud Computing. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :476–481.
The security of user personal information on cloud computing is an important issue for the recommendation system. In order to provide high quality recommendation services, privacy of user is often obtained by untrusted recommendation systems. At the same time, malicious attacks often use the recommendation results to try to guess the private data of user. This paper proposes a hybrid algorithm based on NMF and random perturbation technology, which implements the recommendation system and solves the protection problem of user privacy data in the recommendation process on cloud computing. Compared with the privacy protection algorithm of SVD, the elements of the matrix after the decomposition of the new algorithm are non-negative elements, avoiding the meaninglessness of negative numbers in the matrix formed by texts, images, etc., and it has a good explanation for the local characteristics of things. Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of protecting users' personal privacy on cloud computing.
ahmad, sahan, Zobaed, SM, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  Edge Computing for User-Centric Secure Search on Cloud-Based Encrypted Big Data. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :662–669.
Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many organizations (users) with sensitive data to utilize cloud-based solutions. User-side encryption can potentially address these concerns by establishing user-centric cloud services and granting data control to the user. Nonetheless, user-side encryption limits the ability to process (e.g., search) encrypted data on the cloud. Accordingly, in this research, we provide a framework that enables processing (in particular, searching) of encrypted multiorganizational (i.e., multi-source) big data without revealing the data to cloud provider. Our framework leverages locality feature of edge computing to offer a user-centric search ability in a realtime manner. In particular, the edge system intelligently predicts the user's search pattern and prunes the multi-source big data search space to reduce the search time. The pruning system is based on efficient sampling from the clustered big dataset on the cloud. For each cluster, the pruning system dynamically samples appropriate number of terms based on the user's search tendency, so that the cluster is optimally represented. We developed a prototype of a user-centric search system and evaluated it against multiple datasets. Experimental results demonstrate 27% improvement in the pruning quality and search accuracy.
Abur, Maria M., Junaidu, Sahalu B., Obiniyi, Afolayan A., Abdullahi, Saleh E..  2019.  Privacy Token Technique for Protecting User’s Attributes in a Federated Identity Management System for the Cloud Environment. 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf). :1–10.
Once an individual employs the use of the Internet for accessing information; carrying out transactions and sharing of data on the Cloud, they are connected to diverse computers on the network. As such, security of such transmitted data is most threatened and then potentially creating privacy risks of users on the federated identity management system in the Cloud. Usually, User's attributes or Personal Identifiable Information (PII) are needed to access Services on the Cloud from different Service Providers (SPs). Sometime these SPs may by themselves violate user's privacy by the reuse of user's attributes offered them for the release of services to the users without their consent and then carrying out activities that may appear malicious and then causing damage to the users. Similarly, it should be noted that sensitive user's attributes (e.g. first name, email, address and the likes) are received in their original form by needed SPs in plaintext. As a result of these problems, user's privacy is being violated. Since these SPs may reuse them or connive with other SPs to expose a user's identity in the cloud environment. This research is motivated to provide a protective and novel approach that shall no longer release original user's attributes to SPs but pseudonyms that shall prevent the SPs from violating user's privacy through connivance to expose the user's identity or other means. The paper introduces a conceptual framework for the proposed user's attributes privacy protection in a federated identity management system for the cloud. On the proposed system, the use of pseudonymous technique also called Privacy Token (PT) is employed. The pseudonymous technique ensures users' original attributes values are not sent directly to the SP but auto generated pseudo attributes values. The PT is composed of: Pseudo Attribute values, Timestamp and SPİD. These composition of the PT makes it difficult for the User's PII to be revealed and further preventing the SPs from being able to keep them or reuse them in the future without the user's consent for any purpose. Another important feature of the PT is its ability to forestall collusion among several collaborating service providers. This is due to the fact that each SP receives pseudo values that have no direct link to the identity of the user. The prototype was implemented with Java programming language and its performance tested on CloudAnalyst simulation.
Mahmood, Shah.  2019.  The Anti-Data-Mining (ADM) Framework - Better Privacy on Online Social Networks and Beyond. 2019 IEEE International Conference on Big Data (Big Data). :5780–5788.
The unprecedented and enormous growth of cloud computing, especially online social networks, has resulted in numerous incidents of the loss of users' privacy. In this paper, we provide a framework, based on our anti-data-mining (ADM) principle, to enhance users' privacy against adversaries including: online social networks; search engines; financial terminal providers; ad networks; eavesdropping governments; and other parties who can monitor users' content from the point where the content leaves users' computers to within the data centers of these information accumulators. To achieve this goal, our framework proactively uses the principles of suppression of sensitive data and disinformation. Moreover, we use social-bots in a novel way for enhanced privacy and provide users' with plausible deniability for their photos, audio, and video content uploaded online.
Oleshchuk, Vladimir.  2019.  Secure and Privacy Preserving Pattern Matching in Distributed Cloud-based Data Storage. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:820–823.
Given two strings: pattern p of length m and text t of length n. The string matching problem is to find all (or some) occurrences of the pattern p in the text t. We introduce a new simple data structure, called index arrays, and design fast privacy-preserving matching algorithm for string matching. The motivation behind introducing index arrays is determined by the need for pattern matching on distributed cloud-based datasets with semi-trusted cloud providers. It is intended to use encrypted index arrays both to improve performance and protect confidentiality and privacy of user data.
Sharma, Yoshita, Gupta, Himanshu, Khatri, Sunil Kumar.  2019.  A Security Model for the Enhancement of Data Privacy in Cloud Computing. 2019 Amity International Conference on Artificial Intelligence (AICAI). :898–902.
As we all are aware that internet acts as a depository to store cyberspace data and provide as a service to its user. cloud computing is a technology by internet, where a large amount of data being pooled by different users is stored. The data being stored comes from various organizations, individuals, and communities etc. Thus, security and privacy of data is of utmost importance to all of its users regardless of the nature of the data being stored. In this research paper the use of multiple encryption technique outlines the importance of data security and privacy protection. Also, what nature of attacks and issues might arise that may corrupt the data; therefore, it is essential to apply effective encryption methods to increase data security.
Almtrf, Aljwhrh, Alagrash, Yasamin, Zohdy, Mohamed.  2019.  Framework modeling for User privacy in cloud computing. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0819–0826.
Many organizations around the world recognize the vitality of cloud computing. However, some concerns make organizations reluctant to adopting cloud computing. These include data security, privacy, and trust issues. It is very important that these issues are addressed to meet client concerns and to encourage the wider adoption of cloud computing. This paper develops a user privacy framework based upon on emerging security model that includes access control, encryption and protection monitor schemas in the cloud environment.