Visible to the public Biblio

Found 5881 results

Filters: Keyword is Resiliency  [Clear All Filters]
2020-06-26
Bento, Murilo E. C., Ramos, Rodrigo A..  2019.  Computing the Worst Case Scenario for Electric Power System Dynamic Security Assessment. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
In operation centers, it is important to know the power transfer limit to guarantee the safety operation of the power system. The Voltage Stability Margin (VSM) is a widely used measure and needs to definition of a load growth direction (LGD) to be computed. However, different definitions of LGD can provide different VSMs and then the VSM may not be reliable. Besides, the measure of this power transfer limit usually is related to the Saddle-Node Bifurcation. In dynamic security assessment (DSA) is highly desirable to identify limit regions where the power system can operate safely due to Hopf (HB) and Saddle-Node (SNB) Bifurcations. This paper presents a modeling of the power system incorporating the LGD variation based on participation factors to evaluate the effects on the stability margin estimation due to HB and SNB. A direct method is used to calculate the stability margin of the power system for a given load direction. The analysis was performed in the IEEE 39 bus system.
Jaiswal, Prajwal Kumar, Das, Sayari, Panigrahi, Bijaya Ketan.  2019.  PMU Based Data Driven Approach For Online Dynamic Security Assessment in Power Systems. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1—7.
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
Putro, Singgih Nugroho, Moses Setiadi, De Rosal Ignatius, Aini, Devita Nurul, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Improved CRT Image Steganography based on Edge Areas and Spread Embedding. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.

Chinese Remainder Theorem (CRT) is one of the spatial domain methods that is more implemented in the data hiding method watermarking. CRT is used to improve security and imperceptibility in the watermarking method. CRT is rarely studied in studies that discuss steganographic images. Steganography research focuses more on increasing imperceptibility, embedded payload, and message security, so methods like LSB are still popular to be developed to date. CRT and LSB have some similarities such as default payload capacity and both are methods in the spatial domain which can produce good imperceptibility quality of stego image. But CRT is very superior in terms of security, so CRT is also widely used in cryptographic algorithms. Some ways to increase imperceptibility in image steganography are edge detection and spread spectrum embedding. This research proposes a combination of edge detection techniques and spread-spectrum embedding based on the CRT method to produce imperceptibility and safe image steganography method. Based on the test results it is proven that the combination of the proposed methods can increase imperceptibility of CRT-based steganography based on SSIM metric.

Karthika, P., Babu, R. Ganesh, Nedumaran, A..  2019.  Machine Learning Security Allocation in IoT. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :474—478.

The progressed computational abilities of numerous asset compelled gadgets mobile phones have empowered different research zones including picture recovery from enormous information stores for various IoT applications. The real difficulties for picture recovery utilizing cell phones in an IoT situation are the computational intricacy and capacity. To manage enormous information in IoT condition for picture recovery a light-weighted profound learning base framework for vitality obliged gadgets. The framework initially recognizes and crop face areas from a picture utilizing Viola-Jones calculation with extra face classifier to take out the identification issue. Besides, the utilizes convolutional framework layers of a financially savvy pre-prepared CNN demonstrate with characterized highlights to speak to faces. Next, highlights of the huge information vault are listed to accomplish a quicker coordinating procedure for constant recovery. At long last, Euclidean separation is utilized to discover comparability among question and archive pictures. For exploratory assessment, we made a nearby facial pictures dataset it including equally single and gathering face pictures. In the dataset can be utilized by different specialists as a scale for examination with other ongoing facial picture recovery frameworks. The trial results demonstrate that our planned framework beats other cutting edge highlight extraction strategies as far as proficiency and recovery for IoT-helped vitality obliged stages.

Maria Verzegnassi, Enrico Giulio, Tountas, Konstantinos, Pados, Dimitris A., Cuomo, Francesca.  2019.  Data Conformity Evaluation: A Novel Approach for IoT Security. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :842—846.

We consider the problem of attack detection for IoT networks based only on passively collected network parameters. For the first time in the literature, we develop a blind attack detection method based on data conformity evaluation. Network parameters collected passively, are converted to their conformity values through iterative projections on refined L1-norm tensor subspaces. We demonstrate our algorithmic development in a case study for a simulated star topology network. Type of attack, affected devices, as well as, attack time frame can be easily identified.

Jiang, Jianguo, Chen, Jiuming, Gu, Tianbo, Choo, Kim-Kwang Raymond, Liu, Chao, Yu, Min, Huang, Weiqing, Mohapatra, Prasant.  2019.  Anomaly Detection with Graph Convolutional Networks for Insider Threat and Fraud Detection. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :109—114.

Anomaly detection generally involves the extraction of features from entities' or users' properties, and the design of anomaly detection models using machine learning or deep learning algorithms. However, only considering entities' property information could lead to high false positives. We posit the importance of also considering connections or relationships between entities in the detecting of anomalous behaviors and associated threat groups. Therefore, in this paper, we design a GCN (graph convolutional networks) based anomaly detection model to detect anomalous behaviors of users and malicious threat groups. The GCN model could characterize entities' properties and structural information between them into graphs. This allows the GCN based anomaly detection model to detect both anomalous behaviors of individuals and associated anomalous groups. We then evaluate the proposed model using a real-world insider threat data set. The results show that the proposed model outperforms several state-of-art baseline methods (i.e., random forest, logistic regression, SVM, and CNN). Moreover, the proposed model can also be applied to other anomaly detection applications.

Niedermaier, Matthias, Fischer, Florian, Merli, Dominik, Sigl, Georg.  2019.  Network Scanning and Mapping for IIoT Edge Node Device Security. 2019 International Conference on Applied Electronics (AE). :1—6.

The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.

Rezaei, Aref, Farzinvash, Leili, Farzamnia, Ali.  2019.  A Novel Steganography Algorithm using Edge Detection and MPC Algorithm. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :49—54.

With the rapid development of the Internet, preserving the security of confidential data has become a challenging issue. An effective method to this end is to apply steganography techniques. In this paper, we propose an efficient steganography algorithm which applies edge detection and MPC algorithm for data concealment in digital images. The proposed edge detection scheme partitions the given image, namely cover image, into blocks. Next, it identifies the edge blocks based on the variance of their corner pixels. Embedding the confidential data in sharp edges causes less distortion in comparison to the smooth areas. To diminish the imposed distortion by data embedding in edge blocks, we employ LSB and MPC algorithms. In the proposed scheme, the blocks are split into some groups firstly. Next, a full tree is constructed per group using the LSBs of its pixels. This tree is converted into another full tree in some rounds. The resultant tree is used to modify the considered LSBs. After the accomplishment of the data embedding process, the final image, which is called stego image, is derived. According to the experimental results, the proposed algorithm improves PSNR with at least 5.4 compared to the previous schemes.

Shengquan, Wang, Xianglong, Li, Ang, Li, Shenlong, Jiang.  2019.  Research on Iris Edge Detection Technology based on Daugman Algorithm. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :308—311.

In the current society, people pay more and more attention to identity security, especially in the case of some highly confidential or personal privacy, one-to-one identification is particularly important. The iris recognition just has the characteristics of high efficiency, not easy to be counterfeited, etc., which has been promoted as an identity technology. This paper has carried out research on daugman algorithm and iris edge detection.

Ostrowski, Łukasz, Marcinek, Krzysztof, Pleskacz, Witold A..  2019.  Implementation and Comparison of SPA and DPA Countermeasures for Elliptic Curve Point Multiplication. 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems". :227—230.

The core operation of all cryptosystems based on Elliptic Curve Cryptography is Elliptic Curve Point Multiplication. Depending on implementation it can be vulnerable to different Side Channel Analysis attacks exploiting information leakage, such as power consumption or execution time. Multiple countermeasures against these attacks have been developed over time, each having different impact on parameters of the cryptosystem. This paper summarizes popular countermeasures for simple and differential power analysis attacks on Elliptic Curve cryptosystems. Presented secure algorithms were implemented in Verilog hardware description language and synthesized to logic gates for power trace generation.

Aung, Tun Myat, Hla, Ni Ni.  2019.  A complex number approach to elliptic curve cryptosystems over finite fields: implementations and experiments. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—8.

Network security is a general idea to ensure information transmission over PC and portable systems. Elliptic curve cryptosystems are nowadays widely used in public communication channels for network security. Their security relies upon the complexity of clarifying the elliptic curve discrete alogarithm issue. But, there are several general attacks in them. Elliptic bend number juggling is actualized over complex fields to enhance the security of elliptic curve cryptosystems. This paper starts with the qualities of elliptic curve cryptosystems and their security administrations. At that point we talk about limited field number-crunching and its properties, prime field number-crunching, twofold field math and complex number-crunching, and elliptic bend number-crunching over prime field and parallel field. This paper proposes how to execute the unpredictable number of math under prime field and double field utilizing java BigInteger class. also, we actualize elliptic bend math and elliptic bend cryptosystems utilizing complex numbers over prime field and double field and talk about our trials that got from the usage.

Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

Gupta, Shubhi, Vashisht, Swati, Singh, Divya, kushwaha, Pradeep.  2019.  Enhancing Big Data Security using Elliptic Curve Cryptography. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :348—351.

Withgrowing times and technology, and the data related to it is increasing on daily basis and so is the daunting task to manage it. The present solution to this problem i.e our present databases, are not the long-term solutions. These data volumes need to be stored safely and retrieved safely to use. This paper presents an overview of security issues for big data. Big Data encompasses data configuration, distribution and analysis of the data that overcome the drawbacks of traditional data processing technology. Big data manages, stores and acquires data in a speedy and cost-effective manner with the help of tools, technologies and frameworks.

Padmashree, M G, Arunalatha, J S, Venugopal, K R.  2019.  HSSM: High Speed Split Multiplier for Elliptic Curve Cryptography in IoT. 2019 Fifteenth International Conference on Information Processing (ICINPRO). :1—5.

Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].

Elhassani, M., Chillali, A., Mouhib, A..  2019.  Elliptic curve and Lattice cryptosystem. 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). :1—4.

In this work, we will present a new hybrid cryptography method based on two hard problems: 1- The problem of the discrete logarithm on an elliptic curve defined on a finite local ring. 2- The closest vector problem in lattice and the conjugate problem on square matrices. At first, we will make the exchange of keys to the Diffie-Hellman. The encryption of a message is done with a bad basis of a lattice.

Pandey, Jai Gopal, Mitharwal, Chhavi, Karmakar, Abhijit.  2019.  An RNS Implementation of the Elliptic Curve Cryptography for IoT Security. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :66—72.

Public key cryptography plays a vital role in many information and communication systems for secure data transaction, authentication, identification, digital signature, and key management purpose. Elliptic curve cryptography (ECC) is a widely used public key cryptographic algorithm. In this paper, we propose a hardware-software codesign implementation of the ECC cipher. The algorithm is modelled in C language. Compute-intensive components are identified for their efficient hardware implementations. In the implementation, residue number system (RNS) with projective coordinates are utilized for performing the required arithmetic operations. To manage the hardware-software codeign in an integrated fashion Xilinx platform studio tool and Virtex-5 xc5vfx70t device based platform is utilized. An application of the implementation is demonstrated for encryption of text and its respective decryption over prime fields. The design is useful for providing an adequate level of security for IoTs.

Bedoui, Mouna, Bouallegue, Belgacem, Hamdi, Belgacem, Machhout, Mohsen.  2019.  An Efficient Fault Detection Method for Elliptic Curve Scalar Multiplication Montgomery Algorithm. 2019 IEEE International Conference on Design Test of Integrated Micro Nano-Systems (DTS). :1—5.

Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.

Babenko, Mikhail, Redvanov, Aziz Salimovich, Deryabin, Maxim, Chervyakov, Nikolay, Nazarov, Anton, Al-Galda, Safwat Chiad, Vashchenko, Irina, Dvoryaninova, Inna, Nepretimova, Elena.  2019.  Efficient Implementation of Cryptography on Points of an Elliptic Curve in Residue Number System. 2019 International Conference on Engineering and Telecommunication (EnT). :1—5.

The article explores the question of the effective implementation of arithmetic operations with points of an elliptic curve given over a prime field. Given that the basic arithmetic operations with points of an elliptic curve are the operations of adding points and doubling points, we study the question of implementing the arithmetic operations of adding and doubling points in various coordinate systems using the weighted number system and using the Residue Number System (RNS). We have shown that using the fourmodule RNS allows you to get an average gain for the operation of adding points of the elliptic curve of 8.67% and for the operation of doubling the points of the elliptic curve of 8.32% compared to the implementation using the operation of modular multiplication with special moduli from NIST FIPS 186.

Savitri, Nadia, Johan, Ahmad Wali Satria Bahari, Al Islama A, Firnanda, Utaminingrum, Fitri.  2019.  Efficient Technique Image Encryption with Cipher Block Chaining and Gingerbreadman Map. 2019 International Conference on Sustainable Information Engineering and Technology (SIET). :116—119.

Digital image security is now a severe issue, especially when sending images to telecommunications networks. There are many ways where digital images can be encrypted and decrypted from secure communication. Digital images contain data that is important when captured or disseminated to preserve and preserve data. The technique of encryption is one way of providing data on digital images. A key cipher block chaining and Gingerbreadman Map are used in our search to encrypt images. This new system uses simplicity, high quality, enhanced by the vehicle's natural efficiency and the number of the chain. The proposed method is performed for experimental purposes and the experiments are performed in- depth, highly reliable analysis. The results confirm that by referring to several known attacks, the plan cannot be completed. Comparative studies with other algorithms show a slight rise in the security of passwords with the advantages of security of the chain. The results of this experiment are a comparison of button sensitivity and a comparison after encryption and decryption of the initial image using the amount of pixel change rate and unified average change intensity.

Abir, Md. Towsif, Rahman, Lamiya, Miftah, Samit Shahnawaz, Sarker, Sudipta, Al Imran, Md. Ibrahim, Shafiqul Islam, Md..  2019.  Image Encryption and Decryption using Enigma Algorithm. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—5.

The main objective of this paper is to present a more secured and computationally efficient procedure of encrypting and decrypting images using the enigma algorithm in comparison to the existing methods. Available literature on image encryptions and descriptions are not highly secured in every case.To achieve more secured image processing for highly advanced technologies, a proposed algorithm can be the process used in enigma machine for image encryption and decryption. Enigma machine is piece of spook hardware that was used frequently during the World War II by the Germans. This paper describes the detailed algorithm along with proper demonstration of several essential components present in an enigma machine that is required for image security. Each pixel in a colorful picture can be represented by RGB (Red, Green, Blue) value. The range of RGB values is 0 to 255 that states the red, green and blue intensity of a particular picture.These RGB values are accessed one by one and changed into another by various steps and hence it is not possible to track the original RGB value. In order to retrieve the original image, the receiver needs to know the setting of the enigma. To compare the decrypted image with the original one,these two images are subtracted and their results are also discussed in this paper.

Bouchaala, Mariem, Ghazel, Cherif, Saidane, Leila Azouz.  2019.  Revocable Sliced CipherText Policy Attribute Based Encryption Scheme in Cloud Computing. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1860—1865.

Cloud Computing is the most promising paradigm in recent times. It offers a cost-efficient service to individual and industries. However, outsourcing sensitive data to entrusted Cloud servers presents a brake to Cloud migration. Consequently, improving the security of data access is the most critical task. As an efficient cryptographic technique, Ciphertext Policy Attribute Based Encryption(CP-ABE) develops and implements fine-grained, flexible and scalable access control model. However, existing CP-ABE based approaches suffer from some limitations namely revocation, data owner overhead and computational cost. In this paper, we propose a sliced revocable solution resolving the aforementioned issues abbreviated RS-CPABE. We applied splitting algorithm. We execute symmetric encryption with Advanced Encryption Standard (AES)in large data size and asymmetric encryption with CP-ABE in constant key length. We re-encrypt in case of revocation one single slice. To prove the proposed model, we expose security and performance evaluation.

Betha, Durga Janardhana Anudeep, Bhanuj, Tatineni Sai, Umamaheshwari, B, Iyer, R. Abirami, Devi, R. Santhiya, Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Chaotic based Image Encryption - A Neutral Perspective. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—5.

Today, there are several applications which allow us to share images over the internet. All these images must be stored in a secure manner and should be accessible only to the intended recipients. Hence it is of utmost importance to develop efficient and fast algorithms for encryption of images. This paper uses chaotic generators to generate random sequences which can be used as keys for image encryption. These sequences are seemingly random and have statistical properties. This makes them resistant to analysis and correlation attacks. However, these sequences have fixed cycle lengths. This restricts the number of sequences that can be used as keys. This paper utilises neural networks as a source of perturbation in a chaotic generator and uses its output to encrypt an image. The robustness of the encryption algorithm can be verified using NPCR, UACI, correlation coefficient analysis and information entropy analysis.

Chandra, K. Ramesh, Prudhvi Raj, B., Prasannakumar, G..  2019.  An Efficient Image Encryption Using Chaos Theory. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :1506—1510.

This paper presents the encryption of advanced pictures dependent on turmoil hypothesis. Two principal forms are incorporated into this method those are pixel rearranging and pixel substitution. Disorder hypothesis is a part of science concentrating on the conduct of dynamical frameworks that are profoundly touchy to beginning conditions. A little change influences the framework to carry on totally unique, little changes in the beginning position of a disorganized framework have a major effect inevitably. A key of 128-piece length is created utilizing mayhem hypothesis, and decoding should be possible by utilizing a similar key. The bit-XOR activity is executed between the unique picture and disorder succession x is known as pixel substitution. Pixel rearranging contains push savvy rearranging and section astute rearranging gives extra security to pictures. The proposed strategy for encryption gives greater security to pictures.

M, Raviraja Holla, D, Suma.  2019.  Memory Efficient High-Performance Rotational Image Encryption. 2019 International Conference on Communication and Electronics Systems (ICCES). :60—64.

Image encryption is an essential part of a Visual Cryptography. Existing traditional sequential encryption techniques are infeasible to real-time applications. High-performance reformulations of such methods are increasingly growing over the last decade. These reformulations proved better performances over their sequential counterparts. A rotational encryption scheme encrypts the images in such a way that the decryption is possible with the rotated encrypted images. A parallel rotational encryption technique makes use of a high-performance device. But it less-leverages the optimizations offered by them. We propose a rotational image encryption technique which makes use of memory coalescing provided by the Compute Unified Device Architecture (CUDA). The proposed scheme achieves improved global memory utilization and increased efficiency.

Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.