Visible to the public Biblio

Filters: Keyword is Postal services  [Clear All Filters]
Sel, Slhami, Hanbay, Davut.  2019.  E-Mail Classification Using Natural Language Processing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Thanks to the rapid increase in technology and electronic communications, e-mail has become a serious communication tool. In many applications such as business correspondence, reminders, academic notices, web page memberships, e-mail is used as primary way of communication. If we ignore spam e-mails, there remain hundreds of e-mails received every day. In order to determine the importance of received e-mails, the subject or content of each e-mail must be checked. In this study we proposed an unsupervised system to classify received e-mails. Received e-mails' coordinates are determined by a method of natural language processing called as Word2Vec algorithm. According to the similarities, processed data are grouped by k-means algorithm with an unsupervised training model. In this study, 10517 e-mails were used in training. The success of the system is tested on a test group of 200 e-mails. In the test phase M3 model (window size 3, min. Word frequency 10, Gram skip) consolidated the highest success (91%). Obtained results are evaluated in section VI.
Lekha, J., Maheshwaran, J, Tharani, K, Ram, Prathap K, Surya, Murthy K, Manikandan, A.  2019.  Efficient Detection of Spam Messages Using OBF and CBF Blocking Techniques. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1175–1179.

Emails are the fundamental unit of web applications. There is an exponential growth in sending and receiving emails online. However, spam mail has turned into an intense issue in email correspondence condition. There are number of substance based channel systems accessible to be specific content based filter(CBF), picture based sifting and many other systems to channel spam messages. The existing technological solution consists of a combination of porter stemer algorithm(PSA) and k means clustering which is adaptive in nature. These procedures are more expensive in regard of the calculation and system assets as they required the examination of entire spam message and calculation of the entire substance of the server. These are the channels must additionally not powerful in nature life on the grounds that the idea of spam block mail and spamming changes much of the time. We propose a starting point based spam mail-sifting system benefit, which works considering top head notcher data of the mail message paying little respect to the body substance of the mail. It streamlines the system and server execution by increasing the precision, recall and accuracy than the existing methods. To design an effective and efficient of autonomous and efficient spam detection system to improve network performance from unknown privileged user attacks.

Dan, Kenya, Kitagawa, Naoya, Sakuraba, Shuji, Yamai, Nariyoshi.  2019.  Spam Domain Detection Method Using Active DNS Data and E-Mail Reception Log. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:896–899.

E-mail is widespread and an essential communication technology in modern times. Since e-mail has problems with spam mails and spoofed e-mails, countermeasures are required. Although SPF, DKIM and DMARC have been proposed as sender domain authentication, these mechanisms cannot detect non-spoofing spam mails. To overcome this issue, this paper proposes a method to detect spam domains by supervised learning with features extracted from e-mail reception log and active DNS data, such as the result of Sender Authentication, the Sender IP address, the number of each DNS record, and so on. As a result of the experiment, our method can detect spam domains with 88.09% accuracy and 97.11% precision. We confirmed that our method can detect spam domains with detection accuracy 19.40% higher than the previous study by utilizing not only active DNS data but also e-mail reception log in combination.

Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

Karamollaoglu, H., Dogru, İ A., Dorterler, M..  2018.  Detection of Spam E-mails with Machine Learning Methods. 2018 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–5.

E-mail communication is one of today's indispensable communication ways. The widespread use of email has brought about some problems. The most important one of these problems are spam (unwanted) e-mails, often composed of advertisements or offensive content, sent without the recipient's request. In this study, it is aimed to analyze the content information of e-mails written in Turkish with the help of Naive Bayes Classifier and Vector Space Model from machine learning methods, to determine whether these e-mails are spam e-mails and classify them. Both methods are subjected to different evaluation criteria and their performances are compared.

Buber, E., Dırı, B., Sahingoz, O. K..  2017.  Detecting phishing attacks from URL by using NLP techniques. 2017 International Conference on Computer Science and Engineering (UBMK). :337–342.

Nowadays, cyber attacks affect many institutions and individuals, and they result in a serious financial loss for them. Phishing Attack is one of the most common types of cyber attacks which is aimed at exploiting people's weaknesses to obtain confidential information about them. This type of cyber attack threats almost all internet users and institutions. To reduce the financial loss caused by this type of attacks, there is a need for awareness of the users as well as applications with the ability to detect them. In the last quarter of 2016, Turkey appears to be second behind China with an impact rate of approximately 43% in the Phishing Attack Analysis report between 45 countries. In this study, firstly, the characteristics of this type of attack are explained, and then a machine learning based system is proposed to detect them. In the proposed system, some features were extracted by using Natural Language Processing (NLP) techniques. The system was implemented by examining URLs used in Phishing Attacks before opening them with using some extracted features. Many tests have been applied to the created system, and it is seen that the best algorithm among the tested ones is the Random Forest algorithm with a success rate of 89.9%.

Schäfer, C..  2017.  Detection of compromised email accounts used for spamming in correlation with origin-destination delivery notification extracted from metadata. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Fifty-four percent of the global email traffic in October 2016 was spam and phishing messages. Those emails were commonly sent from compromised email accounts. Previous research has primarily focused on detecting incoming junk mail but not locally generated spam messages. State-of-the-art spam detection methods generally require the content of the email to be able to classify it as either spam or a regular message. This content is not available within encrypted messages or is prohibited due to data privacy. The object of the research presented is to detect an anomaly with the Origin-Destination Delivery Notification method, which is based on the geographical origin and destination as well as the Delivery Status Notification of the remote SMTP server without the knowledge of the email content. The proposed method detects an abused account after a few transferred emails; it is very flexible and can be adjusted for every environment and requirement.

Lin, L., Zhong, S., Jia, C., Chen, K..  2017.  Insider Threat Detection Based on Deep Belief Network Feature Representation. 2017 International Conference on Green Informatics (ICGI). :54–59.

Insider threat is a significant security risk for information system, and detection of insider threat is a major concern for information system organizers. Recently existing work mainly focused on the single pattern analysis of user single-domain behavior, which were not suitable for user behavior pattern analysis in multi-domain scenarios. However, the fusion of multi-domain irrelevant features may hide the existence of anomalies. Previous feature learning methods have relatively a large proportion of information loss in feature extraction. Therefore, this paper proposes a hybrid model based on the deep belief network (DBN) to detect insider threat. First, an unsupervised DBN is used to extract hidden features from the multi-domain feature extracted by the audit logs. Secondly, a One-Class SVM (OCSVM) is trained from the features learned by the DBN. The experimental results on the CERT dataset demonstrate that the DBN can be used to identify the insider threat events and it provides a new idea to feature processing for the insider threat detection.

Allen, J. H., Curtis, P. D., Mehravari, N., Crabb, G..  2015.  A proven method for identifying security gaps in international postal and transportation critical infrastructure. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

The safety, security, and resilience of international postal, shipping, and transportation critical infrastructure are vital to the global supply chain that enables worldwide commerce and communications. But security on an international scale continues to fail in the face of new threats, such as the discovery by Panamanian authorities of suspected components of a surface-to-air missile system aboard a North Korean-flagged ship in July 2013 [1].This reality calls for new and innovative approaches to critical infrastructure security. Owners and operators of critical postal, shipping, and transportation operations need new methods to identify, assess, and mitigate security risks and gaps in the most effective manner possible.

Balakrishnan, R., Parekh, R..  2014.  Learning to predict subject-line opens for large-scale email marketing. Big Data (Big Data), 2014 IEEE International Conference on. :579-584.

Billions of dollars of services and goods are sold through email marketing. Subject lines have a strong influence on open rates of the e-mails, as the consumers often open e-mails based on the subject. Traditionally, the e-mail-subject lines are compiled based on the best assessment of the human editors. We propose a method to help the editors by predicting subject line open rates by learning from past subject lines. The method derives different types of features from subject lines based on keywords, performance of past subject lines and syntax. Furthermore, we evaluate the contribution of individual subject-line keywords to overall open rates based on an iterative method-namely Attribution Scoring - and use this for improved predictions. A random forest based model is trained to combine these features to predict the performance. We use a dataset of more than a hundred thousand different subject lines with many billions of impressions to train and test the method. The proposed method shows significant improvement in prediction accuracy over the baselines for both new as well as already used subject lines.

Cailleux, L., Bouabdallah, A., Bonnin, J.-M..  2014.  A confident email system based on a new correspondence model. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :489-492.

Despite all the current controversies, the success of the email service is still valid. The ease of use of its various features contributed to its widespread adoption. In general, the email system provides for all its users the same set of features controlled by a single monolithic policy. Such solutions are efficient but limited because they grant no place for the concept of usage which denotes a user's intention of communication: private, professional, administrative, official, military. The ability to efficiently send emails from mobile devices creates new interesting opportunities. We argue that the context (location, time, device, operating system, access network...) of the email sender appears as a new dimension we have to take into account to complete the picture. Context is clearly orthogonal to usage because a same usage may require different features depending of the context. It is clear that there is no global policy meeting requirements of all possible usages and contexts. To address this problem, we propose to define a correspondence model which for a given usage and context allows to derive a correspondence type encapsulating the exact set of required features. With this model, it becomes possible to define an advanced email system which may cope with multiple policies instead of a single monolithic one. By allowing a user to select the exact policy coping with her needs, we argue that our approach reduces the risk-taking allowing the email system to slide from a trusted one to a confident one.