Visible to the public Biblio

Filters: Keyword is Particle measurements  [Clear All Filters]
2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2021-03-01
Nasir, J., Norman, U., Bruno, B., Dillenbourg, P..  2020.  When Positive Perception of the Robot Has No Effect on Learning. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :313–320.
Humanoid robots, with a focus on personalised social behaviours, are increasingly being deployed in educational settings to support learning. However, crafting pedagogical HRI designs and robot interventions that have a real, positive impact on participants' learning, as well as effectively measuring such impact, is still an open challenge. As a first effort in tackling the issue, in this paper we propose a novel robot-mediated, collaborative problem solving activity for school children, called JUSThink, aiming at improving their computational thinking skills. JUSThink will serve as a baseline and reference for investigating how the robot's behaviour can influence the engagement of the children with the activity, as well as their collaboration and mutual understanding while working on it. To this end, this first iteration aims at investigating (i) participants' engagement with the activity (Intrinsic Motivation Inventory-IMI), their mutual understanding (IMIlike) and perception of the robot (Godspeed Questionnaire); (ii) participants' performance during the activity, using several performance and learning metrics. We carried out an extensive user-study in two international schools in Switzerland, in which around 100 children participated in pairs in one-hour long interactions with the activity. Surprisingly, we observe that while a teams' performance significantly affects how team members evaluate their competence, mutual understanding and task engagement, it does not affect their perception of the robot and its helpfulness, a fact which highlights the need for baseline studies and multi-dimensional evaluation metrics when assessing the impact of robots in educational activities.
2021-02-03
Lyons, J. B., Nam, C. S., Jessup, S. A., Vo, T. Q., Wynne, K. T..  2020.  The Role of Individual Differences as Predictors of Trust in Autonomous Security Robots. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—5.

This research used an Autonomous Security Robot (ASR) scenario to examine public reactions to a robot that possesses the authority and capability to inflict harm on a human. Individual differences in terms of personality and Perfect Automation Schema (PAS) were examined as predictors of trust in the ASR. Participants (N=316) from Amazon Mechanical Turk (MTurk) rated their trust of the ASR and desire to use ASRs in public and military contexts following a 2-minute video depicting the robot interacting with three research confederates. The video showed the robot using force against one of the three confederates with a non-lethal device. Results demonstrated that individual differences factors were related to trust and desired use of the ASR. Agreeableness and both facets of the PAS (high expectations and all-or-none beliefs) demonstrated unique associations with trust using multiple regression techniques. Agreeableness, intellect, and high expectations were uniquely related to desired use for both public and military domains. This study showed that individual differences influence trust and one's desired use of ASRs, demonstrating that societal reactions to ASRs may be subject to variation among individuals.

2021-02-01
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
2021-01-20
Mindermann, K., Wagner, S..  2020.  Fluid Intelligence Doesn't Matter! Effects of Code Examples on the Usability of Crypto APIs. 2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :306—307.

Context : Programmers frequently look for the code of previously solved problems that they can adapt for their own problem. Despite existing example code on the web, on sites like Stack Overflow, cryptographic Application Programming Interfaces (APIs) are commonly misused. There is little known about what makes examples helpful for developers in using crypto APIs. Analogical problem solving is a psychological theory that investigates how people use known solutions to solve new problems. There is evidence that the capacity to reason and solve novel problems a.k.a Fluid Intelligence (Gf) and structurally and procedurally similar solutions support problem solving. Aim: Our goal is to understand whether similarity and Gf also have an effect in the context of using cryptographic APIs with the help of code examples. Method : We conducted a controlled experiment with 76 student participants developing with or without procedurally similar examples, one of two Java crypto libraries and measured the Gf of the participants as well as the effect on usability (effectiveness, efficiency, satisfaction) and security bugs. Results: We observed a strong effect of code examples with a high procedural similarity on all dependent variables. Fluid intelligence Gf had no effect. It also made no difference which library the participants used. Conclusions: Example code must be more highly similar to a concrete solution, not very abstract and generic to have a positive effect in a development task.

2020-12-01
Xu, J., Bryant, D. G., Howard, A..  2018.  Would You Trust a Robot Therapist? Validating the Equivalency of Trust in Human-Robot Healthcare Scenarios 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :442—447.

With the recent advances in computing, artificial intelligence (AI) is quickly becoming a key component in the future of advanced applications. In one application in particular, AI has played a major role - that of revolutionizing traditional healthcare assistance. Using embodied interactive agents, or interactive robots, in healthcare scenarios has emerged as an innovative way to interact with patients. As an essential factor for interpersonal interaction, trust plays a crucial role in establishing and maintaining a patient-agent relationship. In this paper, we discuss a study related to healthcare in which we examine aspects of trust between humans and interactive robots during a therapy intervention in which the agent provides corrective feedback. A total of twenty participants were randomly assigned to receive corrective feedback from either a robotic agent or a human agent. Survey results indicate trust in a therapy intervention coupled with a robotic agent is comparable to that of trust in an intervention coupled with a human agent. Results also show a trend that the agent condition has a medium-sized effect on trust. In addition, we found that participants in the robot therapist condition are 3.5 times likely to have trust involved in their decision than the participants in the human therapist condition. These results indicate that the deployment of interactive robot agents in healthcare scenarios has the potential to maintain quality of health for future generations.

Nielsen, C., Mathiesen, M., Nielsen, J., Jensen, L. C..  2019.  Changes in Heart Rate and Feeling of Safety When Led by a Rehabilitation Robot. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :580—581.

Trust is an important topic in medical human-robot interaction, since patients may be more fragile than other groups of people. This paper investigates the issue of users' trust when interacting with a rehabilitation robot. In the study, we investigate participants' heart rate and perception of safety in a scenario when their arm is led by the rehabilitation robot in two types of exercises at three different velocities. The participants' heart rate are measured during each exercise and the participants are asked how safe they feel after each exercise. The results showed that velocity and type of exercise has no significant influence on the participants' heart rate, but they do have significant influence on how safe they feel. We found that increasing velocity and longer exercises negatively influence participants' perception of safety.

Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

2019-05-08
Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.

2018-06-07
Zenger, C. T., Pietersz, M., Rex, A., Brauer, J., Dressler, F. P., Baiker, C., Theis, D., Paar, C..  2017.  Implementing a real-time capable WPLS testbed for independent performance and security analyses. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :9–13.

As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.

2018-03-19
Dai, W., Win, M. Z..  2017.  On Protecting Location Secrecy. 2017 International Symposium on Wireless Communication Systems (ISWCS). :31–36.

High-accuracy localization is a prerequisite for many wireless applications. To obtain accurate location information, it is often required to share users' positional knowledge and this brings the risk of leaking location information to adversaries during the localization process. This paper develops a theory and algorithms for protecting location secrecy. In particular, we first introduce a location secrecy metric (LSM) for a general measurement model of an eavesdropper. Compared to previous work, the measurement model accounts for parameters such as channel conditions and time offsets in addition to the positions of users. We determine the expression of the LSM for typical scenarios and show how the LSM depends on the capability of an eavesdropper and the quality of the eavesdropper's measurement. Based on the insights gained from the analysis, we consider a case study in wireless localization network and develop an algorithm that diminish the eavesdropper's capabilities by exploiting the reciprocity of channels. Numerical results show that the proposed algorithm can effectively increase the LSM and protect location secrecy.

Ward, T., Choi, J. I., Butler, K., Shea, J. M., Traynor, P., Wong, T. F..  2017.  Privacy Preserving Localization Using a Distributed Particle Filtering Protocol. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :835–840.

Cooperative spectrum sensing is often necessary in cognitive radios systems to localize a transmitter by fusing the measurements from multiple sensing radios. However, revealing spectrum sensing information also generally leaks information about the location of the radio that made those measurements. We propose a protocol for performing cooperative spectrum sensing while preserving the privacy of the sensing radios. In this protocol, radios fuse sensing information through a distributed particle filter based on a tree structure. All sensing information is encrypted using public-key cryptography, and one of the radios serves as an anonymizer, whose role is to break the connection between the sensing radios and the public keys they use. We consider a semi-honest (honest-but-curious) adversary model in which there is at most a single adversary that is internal to the sensing network and complies with the specified protocol but wishes to determine information about the other participants. Under this scenario, an adversary may learn the sensing information of some of the radios, but it does not have any way to tie that information to a particular radio's identity. We test the performance of our proposed distributed, tree-based particle filter using physical measurements of FM broadcast stations.

2017-12-12
Reinerman-Jones, L., Matthews, G., Wohleber, R., Ortiz, E..  2017.  Scenarios using situation awareness in a simulation environment for eliciting insider threat behavior. 2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–3.

An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.

2017-03-08
Kalina, J., Schlenker, A., Kutílek, P..  2015.  Highly robust analysis of keystroke dynamics measurements. 2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI). :133–138.

Standard classification procedures of both data mining and multivariate statistics are sensitive to the presence of outlying values. In this paper, we propose new algorithms for computing regularized versions of linear discriminant analysis for data with small sample sizes in each group. Further, we propose a highly robust version of a regularized linear discriminant analysis. The new method denoted as MWCD-L2-LDA is based on the idea of implicit weights assigned to individual observations, inspired by the minimum weighted covariance determinant estimator. Classification performance of the new method is illustrated on a detailed analysis of our pilot study of authentication methods on computers, using individual typing characteristics by means of keystroke dynamics.

2015-04-30
Montague, E., Jie Xu, Chiou, E..  2014.  Shared Experiences of Technology and Trust: An Experimental Study of Physiological Compliance Between Active and Passive Users in Technology-Mediated Collaborative Encounters. Human-Machine Systems, IEEE Transactions on. 44:614-624.

The aim of this study is to examine the utility of physiological compliance (PC) to understand shared experience in a multiuser technological environment involving active and passive users. Common ground is critical for effective collaboration and important for multiuser technological systems that include passive users since this kind of user typically does not have control over the technology being used. An experiment was conducted with 48 participants who worked in two-person groups in a multitask environment under varied task and technology conditions. Indicators of PC were measured from participants' cardiovascular and electrodermal activities. The relationship between these PC indicators and collaboration outcomes, such as performance and subjective perception of the system, was explored. Results indicate that PC is related to group performance after controlling for task/technology conditions. PC is also correlated with shared perceptions of trust in technology among group members. PC is a useful tool for monitoring group processes and, thus, can be valuable for the design of collaborative systems. This study has implications for understanding effective collaboration.