Visible to the public Biblio

Filters: Keyword is deep convolutional neural networks  [Clear All Filters]
Saleh, I., Ji, H..  2020.  Network Traffic Images: A Deep Learning Approach to the Challenge of Internet Traffic Classification. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0329–0334.
The challenge of network traffic classification exists at the heart of many networking related tasks aimed at improving the overall user experience and usability of the internet. Current techniques, such as deep packet inspection, depend heavily on interaction by network administrators and engineers to maintain up to date stores of application network signatures and the infrastructure required to utilize them effectively. In this paper, we introduce Network Traffic Images, a 2-dimensional (2D) formulation of a stream of packet header lengths, which enable us to employ deep convolutional neural networks for network traffic classification. Five different network traffic image orientation mappings are carefully designed to deduce the best way to transform the 1-dimensional packet-subflow into a 2D image. Two different mapping strategies, one packet-relative and the other time-relative, are experimented with to map the packets of a packet flow to the pixels in the image. Experiments shows that high classification accuracy can be achieved with minimal manual effort using network traffic images in deep learning.
Bartan, Burak, Pilanci, Mert.  2019.  Distributed Black-Box optimization via Error Correcting Codes. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :246—252.
We introduce a novel distributed derivative-free optimization framework that is resilient to stragglers. The proposed method employs coded search directions at which the objective function is evaluated, and a decoding step to find the next iterate. Our framework can be seen as an extension of evolution strategies and structured exploration methods where structured search directions were utilized. As an application, we consider black-box adversarial attacks on deep convolutional neural networks. Our numerical experiments demonstrate a significant improvement in the computation times.
Perez, Claudio A., Estévez, Pablo A, Galdames, Francisco J., Schulz, Daniel A., Perez, Juan P., Bastías, Diego, Vilar, Daniel R..  2018.  Trademark Image Retrieval Using a Combination of Deep Convolutional Neural Networks. 2018 International Joint Conference on Neural Networks (IJCNN). :1—7.
Trademarks are recognizable images and/or words used to distinguish various products or services. They become associated with the reputation, innovation, quality, and warranty of the products. Countries around the world have offices for industrial/intellectual property (IP) registration. A new trademark image in application for registration should be distinct from all the registered trademarks. Due to the volume of trademark registration applications and the size of the databases containing existing trademarks, it is impossible for humans to make all the comparisons visually. Therefore, technological tools are essential for this task. In this work we use a pre-trained, publicly available Convolutional Neural Network (CNN) VGG19 that was trained on the ImageNet database. We adapted the VGG19 for the trademark image retrieval (TIR) task by fine tuning the network using two different databases. The VGG19v was trained with a database organized with trademark images using visual similarities, and the VGG19c was trained using trademarks organized by using conceptual similarities. The database for the VGG19v was built using trademarks downloaded from the WEB, and organized by visual similarity according to experts from the IP office. The database for the VGG19c was built using trademark images from the United States Patent and Trademarks Office and organized according to the Vienna conceptual protocol. The TIR was assessed using the normalized average rank for a test set from the METU database that has 922,926 trademark images. We computed the normalized average ranks for VGG19v, VGG19c, and for a combination of both networks. Our method achieved significantly better results on the METU database than those published previously.
Bashir, Muzammil, Rundensteiner, Elke A., Ahsan, Ramoza.  2019.  A deep learning approach to trespassing detection using video surveillance data. 2019 IEEE International Conference on Big Data (Big Data). :3535—3544.
Railroad trespassing is a dangerous activity with significant security and safety risks. However, regular patrolling of potential trespassing sites is infeasible due to exceedingly high resource demands and personnel costs. This raises the need to design automated trespass detection and early warning prediction techniques leveraging state-of-the-art machine learning. To meet this need, we propose a novel framework for Automated Railroad Trespassing detection System using video surveillance data called ARTS. As the core of our solution, we adopt a CNN-based deep learning architecture capable of video processing. However, these deep learning-based methods, while effective, are known to be computationally expensive and time consuming, especially when applied to a large volume of surveillance data. Leveraging the sparsity of railroad trespassing activity, ARTS corresponds to a dual-stage deep learning architecture composed of an inexpensive pre-filtering stage for activity detection, followed by a high fidelity trespass classification stage employing deep neural network. The resulting dual-stage ARTS architecture represents a flexible solution capable of trading-off accuracy with computational time. We demonstrate the efficacy of our approach on public domain surveillance data achieving 0.87 f1 score while keeping up with the enormous video volume, achieving a practical time and accuracy trade-off.
Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.

Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

Chen, Y., Lai, Y., Liu, Y..  2017.  Transforming Photos to Comics Using Convolutional Neural Networks. 2017 IEEE International Conference on Image Processing (ICIP). :2010–2014.

In this paper, inspired by Gatys's recent work, we propose a novel approach that transforms photos to comics using deep convolutional neural networks (CNNs). While Gatys's method that uses a pre-trained VGG network generally works well for transferring artistic styles such as painting from a style image to a content image, for more minimalist styles such as comics, the method often fails to produce satisfactory results. To address this, we further introduce a dedicated comic style CNN, which is trained for classifying comic images and photos. This new network is effective in capturing various comic styles and thus helps to produce better comic stylization results. Even with a grayscale style image, Gatys's method can still produce colored output, which is not desirable for comics. We develop a modified optimization framework such that a grayscale image is guaranteed to be synthesized. To avoid converging to poor local minima, we further initialize the output image using grayscale version of the content image. Various examples show that our method synthesizes better comic images than the state-of-the-art method.

Liu, B., Zhu, Z., Yang, Y..  2017.  Convolutional Neural Networks Based Scale-Adaptive Kernelized Correlation Filter for Robust Visual Object Tracking. 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). :423–428.

Visual object tracking is challenging when the object appearances occur significant changes, such as scale change, background clutter, occlusion, and so on. In this paper, we crop different sizes of multiscale templates around object and input these multiscale templates into network to pretrain the network adaptive the size change of tracking object. Different from previous the tracking method based on deep convolutional neural network (CNN), we exploit deep Residual Network (ResNet) to offline train a multiscale object appearance model on the ImageNet, and then the features from pretrained network are transferred into tracking tasks. Meanwhile, the proposed method combines the multilayer convolutional features, it is robust to disturbance, scale change, and occlusion. In addition, we fuse multiscale search strategy into three kernelized correlation filter, which strengthens the ability of adaptive scale change of object. Unlike the previous methods, we directly learn object appearance change by integrating multiscale templates into the ResNet. We compared our method with other CNN-based or correlation filter tracking methods, the experimental results show that our tracking method is superior to the existing state-of-the-art tracking method on Object Tracking Benchmark (OTB-2015) and Visual Object Tracking Benchmark (VOT-2015).