Visible to the public Biblio

Filters: Keyword is Behavioral biometrics  [Clear All Filters]
Sieu, Brandon, Gavrilova, Marina.  2019.  Person Identification from Visual Aesthetics Using Gene Expression Programming. 2019 International Conference on Cyberworlds (CW). :279–286.
The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.
Ahmadi, S. Sareh, Rashad, Sherif, Elgazzar, Heba.  2019.  Machine Learning Models for Activity Recognition and Authentication of Smartphone Users. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0561–0567.
Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.
Fridman, L., Weber, S., Greenstadt, R., Kam, M..  2017.  Active Authentication on Mobile Devices via Stylometry, Application Usage, Web Browsing, and GPS Location. IEEE Systems Journal. 11:513–521.

Active authentication is the problem of continuously verifying the identity of a person based on behavioral aspects of their interaction with a computing device. In this paper, we collect and analyze behavioral biometrics data from 200 subjects, each using their personal Android mobile device for a period of at least 30 days. This data set is novel in the context of active authentication due to its size, duration, number of modalities, and absence of restrictions on tracked activity. The geographical colocation of the subjects in the study is representative of a large closed-world environment such as an organization where the unauthorized user of a device is likely to be an insider threat: coming from within the organization. We consider four biometric modalities: 1) text entered via soft keyboard, 2) applications used, 3) websites visited, and 4) physical location of the device as determined from GPS (when outdoors) or WiFi (when indoors). We implement and test a classifier for each modality and organize the classifiers as a parallel binary decision fusion architecture. We are able to characterize the performance of the system with respect to intruder detection time and to quantify the contribution of each modality to the overall performance.

Adeyemi, I. R., Razak, S. A., Venter, H. S., Salleh, M..  2017.  High-Level Online User Attribution Model Based on Human Polychronic-Monochronic Tendency. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :445–450.

User attribution process based on human inherent dynamics and preference is one area of research that is capable of elucidating and capturing human dynamics on the Internet. Prior works on user attribution concentrated on behavioral biometrics, 1-to-1 user identification process without consideration for individual preference and human inherent temporal tendencies, which is capable of providing a discriminatory baseline for online users, as well as providing a higher level classification framework for novel user attribution. To address these limitations, the study developed a temporal model, which comprises the human Polyphasia tendency based on Polychronic-Monochronic tendency scale measurement instrument and the extraction of unique human-centric features from server-side network traffic of 48 active users. Several machine-learning algorithms were applied to observe distinct pattern among the classes of the Polyphasia tendency, through which a logistic model tree was observed to provide higher classification accuracy for a 1-to-N user attribution process. The study further developed a high-level attribution model for higher-level user attribution process. The result from this study is relevant in online profiling process, forensic identification and profiling process, e-learning profiling process as well as in social network profiling process.

Ikuesan, A. R., Venter, H. S..  2017.  Digital Forensic Readiness Framework Based on Behavioral-Biometrics for User Attribution. 2017 IEEE Conference on Application, Information and Network Security (AINS). :54–59.

Whilst the fundamental composition of digital forensic readiness have been expounded by myriad literature, the integration of behavioral modalities have not been considered. Behavioral modalities such as keystroke and mouse dynamics are key components of human behavior that have been widely used in complementing security in an organization. However, these modalities present better forensic properties, thus more relevant in investigation/incident response, than its deployment in security. This study, therefore, proposes a forensic framework which encompasses a step-by-step guide on how to integrate behavioral biometrics into digital forensic readiness process. The proposed framework, behavioral biometrics-based digital forensics readiness framework (BBDFRF) comprised four phases which include data acquisition, preservation, user-authentication, and user pattern attribution phase. The proposed BBDFRF is evaluated in line with the ISO/IEC 27043 standard for proactive forensics, to address the gap on the integration of the behavioral biometrics into proactive forensics. BBDFRF thus extends the body of literature on the forensic capability of behavioral biometrics. The implementation of this framework can be used to also strengthen the security mechanism of an organization, particularly on continuous authentication.

[Anonymous].  2017.  Sensitivity Analysis in Keystroke Dynamics Using Convolutional Neural Networks. 2017 IEEE Workshop on Information Forensics and Security (WIFS). :1–6.

Biometrics has become ubiquitous and spurred common use in many authentication mechanisms. Keystroke dynamics is a form of behavioral biometrics that can be used for user authentication while actively working at a terminal. The proposed mechanisms involve digraph, trigraph and n-graph analysis as separate solutions or suggest a fusion mechanism with certain limitations. However, deep learning can be used as a unifying machine learning technique that consolidates the power of all different features since it has shown tremendous results in image recognition and natural language processing. In this paper, we investigate the applicability of deep learning on three different datasets by using convolutional neural networks and Gaussian data augmentation technique. We achieve 10% higher accuracy and 7.3% lower equal error rate (EER) than existing methods. Also, our sensitivity analysis indicates that the convolution operation and the fully-connected layer are the most prominent factors that affect the accuracy and the convergence rate of a network trained with keystroke data.

Markwood, Ian D., Liu, Yao.  2016.  Vehicle Self-Surveillance: Sensor-Enabled Automatic Driver Recognition. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :425–436.

Motor vehicles are widely used, quite valuable, and often targeted for theft. Preventive measures include car alarms, proximity control, and physical locks, which can be bypassed if the car is left unlocked, or if the thief obtains the keys. Reactive strategies like cameras, motion detectors, human patrolling, and GPS tracking can monitor a vehicle, but may not detect car thefts in a timely manner. We propose a fast automatic driver recognition system that identifies unauthorized drivers while overcoming the drawbacks of previous approaches. We factor drivers' trips into elemental driving events, from which we extract their driving preference features that cannot be exactly reproduced by a thief driving away in the stolen car. We performed real world evaluation using the driving data collected from 31 volunteers. Experiment results show we can distinguish the current driver as the owner with 97% accuracy, while preventing impersonation 91% of the time.

El Masri, A., Wechsler, H., Likarish, P., Kang, B.B..  2014.  Identifying users with application-specific command streams. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :232-238.

This paper proposes and describes an active authentication model based on user profiles built from user-issued commands when interacting with GUI-based application. Previous behavioral models derived from user issued commands were limited to analyzing the user's interaction with the *Nix (Linux or Unix) command shell program. Human-computer interaction (HCI) research has explored the idea of building users profiles based on their behavioral patterns when interacting with such graphical interfaces. It did so by analyzing the user's keystroke and/or mouse dynamics. However, none had explored the idea of creating profiles by capturing users' usage characteristics when interacting with a specific application beyond how a user strikes the keyboard or moves the mouse across the screen. We obtain and utilize a dataset of user command streams collected from working with Microsoft (MS) Word to serve as a test bed. User profiles are first built using MS Word commands and identification takes place using machine learning algorithms. Best performance in terms of both accuracy and Area under the Curve (AUC) for Receiver Operating Characteristic (ROC) curve is reported using Random Forests (RF) and AdaBoost with random forests.