Visible to the public Biblio

Filters: Keyword is QoS  [Clear All Filters]
2021-07-27
Driss, Maha, Aljehani, Amani, Boulila, Wadii, Ghandorh, Hamza, Al-Sarem, Mohammed.  2020.  Servicing Your Requirements: An FCA and RCA-Driven Approach for Semantic Web Services Composition. IEEE Access. 8:59326—59339.
The evolution of Service-Oriented Computing (SOC) provides more efficient software development methods for building and engineering new value-added service-based applications. SOC is a computing paradigm that relies on Web services as fundamental elements. Research and technical advancements in Web services composition have been considered as an effective opportunity to develop new service-based applications satisfying complex requirements rapidly and efficiently. In this paper, we present a novel approach enhancing the composition of semantic Web services. The novelty of our approach, as compared to others reported in the literature, rests on: i) mapping user's/organization's requirements with Business Process Modeling Notation (BPMN) and semantic descriptions using ontologies, ii) considering functional requirements and also different types of non-functional requirements, such as quality of service (QoS), quality of experience (QoE), and quality of business (QoBiz), iii) using Formal Concept Analysis (FCA) technique to select the optimal set of Web services, iv) considering composability levels between sequential Web services using Relational Concept Analysis (RCA) technique to decrease the required adaptation efforts, and finally, v) validating the obtained service-based applications by performing an analytical technique, which is the monitoring. The approach experimented on an extended version of the OWLS-TC dataset, which includes more than 10830 Web services descriptions from various domains. The obtained results demonstrate that our approach allows to successfully and effectively compose Web services satisfying different types of user's functional and non-functional requirements.
2021-05-03
Gelenbe, Erol.  2020.  Machine Learning for Network Routing. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1–1.
Though currently a “hot topic”, over the past fifteen years [1][2], there has been significant work on the use of machine learning to design large scale computer-communication networks, motivated by the complexity of the systems that are being considered and the unpredictability of their workloads. A topic of great concern has been security [3] and novel techniques for detecting network attacks have been developed based on Machine Learning [8]. However the main challenge with Machine Learning methods in networks has concerned their compatibility with the Internet Protocol and with legacy systems, and a major step forward has come from the establishment of Software Defined Networks (SDN) [4] which delegate network routing to specific SDN routers [4]. SDN has become an industry standard for concentrating network management and routing decisions within specific SDN routers that download the selected paths periodically to network routers, which operate otherwise under the IP protocol. In this paper we describe our work on real-time control of Security and Privacy [7], Energy Consumption and QoS [6] of packet networks using Machine Learning based on the Cognitive Packet Network [9] principles and their application to the H2020 SerIoT Project [5].
2021-04-08
Nguyen, Q. N., Lopez, J., Tsuda, T., Sato, T., Nguyen, K., Ariffuzzaman, M., Safitri, C., Thanh, N. H..  2020.  Adaptive Caching for Beneficial Content Distribution in Information-Centric Networking. 2020 International Conference on Information Networking (ICOIN). :535–540.
Currently, little attention has been carried out to address the feasibility of in-network caching in Information-Centric Networking (ICN) for the design and real-world deployment of future networks. Towards this line, in this paper, we propose a beneficial caching scheme in ICN by storing no more than a specific number of replicas for each content. Particularly, to realize an optimal content distribution for deploying caches in ICN, a content can be cached either partially or as a full-object corresponding to its request arrival rate and data traffic. Also, we employ a utility-based replacement in each content node to keep the most recent and popular content items in the ICN interconnections. The evaluation results show that the proposal improves the cache hit rate and cache diversity considerably, and acts as a beneficial caching approach for network and service providers in ICN. Specifically, the proposed caching mechanism is easy to deploy, robust, and relevant for the content-based providers by enabling them to offer users high Quality of Service (QoS) and gain benefits at the same time.
2021-01-28
Nweke, L. O., Weldehawaryat, G. Kahsay, Wolthusen, S. D..  2020.  Adversary Model for Attacks Against IEC 61850 Real-Time Communication Protocols. 2020 16th International Conference on the Design of Reliable Communication Networks DRCN 2020. :1—8.

Adversarial models are well-established for cryptographic protocols, but distributed real-time protocols have requirements that these abstractions are not intended to cover. The IEEE/IEC 61850 standard for communication networks and systems for power utility automation in particular not only requires distributed processing, but in case of the generic object oriented substation events and sampled value (GOOSE/SV) protocols also hard real-time characteristics. This motivates the desire to include both quality of service (QoS) and explicit network topology in an adversary model based on a π-calculus process algebraic formalism based on earlier work. This allows reasoning over process states, placement of adversarial entities and communication behaviour. We demonstrate the use of our model for the simple case of a replay attack against the publish/subscribe GOOSE/SV subprotocol, showing bounds for non-detectability of such an attack.

2020-12-02
Nleya, B., Khumalo, P., Mutsvangwa, A..  2019.  A Restricted Intermediate Node Buffering-Based Contention Control Scheme for OBS Networks. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1—6.
Optical burst switching (OBS) is a candidate switching paradigm for future backbone all-optical networks. However, data burst contention can be a major problem especially as the number of lightpath connections as well as the overall network radius increases. Furthermore, the absence of or limited buffering provision in core nodes, coupled with the standard one-way resources signaling aggravate contention occurrences resulting in some of the contending bursts being discarded as a consequence. Contention avoidance as well as resolution measures can be applied in such networks in order to resolve any contention issues. In that way, the offered quality of service (QoS) as well as the network performance will remain consistent and reliable. In particular, to maintain the cost effectiveness of OBS deployment, restricted intermediate buffering can be implemented to buffer contending bursts that have already traversed much of the network on their way to the intended destination. Hence in this paper we propose and analyze a restricted intermediate Node Buffering-based routing and wavelength assignment scheme (RI-RWA) scheme to address contention occurrences as well as prevent deletion of contending bursts. The scheme primarily prioritizes the selection of primary as well as deflection paths for establishing lightpath connections paths as a function of individual wavelength contention performances. It further facilitates and allows partial intermediate buffering provisioning for any data bursts that encounter contention after having already propagated more than half the network's diameter. We evaluate the scheme's performance by simulation and obtained results show that the scheme indeed does improve on key network performance metrics such as fairness, load balancing as well as throughput.
2020-12-01
Hendrawan, H., Sukarno, P., Nugroho, M. A..  2019.  Quality of Service (QoS) Comparison Analysis of Snort IDS and Bro IDS Application in Software Define Network (SDN) Architecture. 2019 7th International Conference on Information and Communication Technology (ICoICT). :1—7.

Intrusion Detection system (IDS) was an application which was aimed to monitor network activity or system and it could find if there was a dangerous operation. Implementation of IDS on Software Define Network architecture (SDN) has drawbacks. IDS on SDN architecture might decreasing network Quality of Service (QoS). So the network could not provide services to the existing network traffic. Throughput, delay and packet loss were important parameters of QoS measurement. Snort IDS and bro IDS were tools in the application of IDS on the network. Both had differences, one of which was found in the detection method. Snort IDS used a signature based detection method while bro IDS used an anomaly based detection method. The difference between them had effects in handling the network traffic through it. In this research, we compared both tools. This comparison are done with testing parameters such as throughput, delay, packet loss, CPU usage, and memory usage. From this test, it was found that bro outperform snort IDS for throughput, delay , and packet loss parameters. However, CPU usage and memory usage on bro requires higher resource than snort.

2020-10-29
Kaur, Jasleen, Singh, Tejpreet, Lakhwani, Kamlesh.  2019.  An Enhanced Approach for Attack Detection in VANETs Using Adaptive Neuro-Fuzzy System. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :191—197.
Vehicular Ad-hoc Networks (VANETs) are generally acknowledged as an extraordinary sort of Mobile Ad hoc Network (MANET). VANETs have seen enormous development in a decade ago, giving a tremendous scope of employments in both military and in addition non-military personnel exercises. The temporary network in the vehicles can likewise build the driver's capability on the road. In this paper, an effective information dispersal approach is proposed which enhances the vehicle-to-vehicle availability as well as enhances the QoS between the source and the goal. The viability of the proposed approach is shown with regards to the noteworthy gets accomplished in the parameters in particular, end to end delay, packet drop ratio, average download delay and throughput in comparison with the existing approaches.
2020-09-28
Andreoletti, Davide, Rottondi, Cristina, Giordano, Silvia, Verticale, Giacomo, Tornatore, Massimo.  2019.  An Open Privacy-Preserving and Scalable Protocol for a Network-Neutrality Compliant Caching. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
The distribution of video contents generated by Content Providers (CPs) significantly contributes to increase the congestion within the networks of Internet Service Providers (ISPs). To alleviate this problem, CPs can serve a portion of their catalogues to the end users directly from servers (i.e., the caches) located inside the ISP network. Users served from caches perceive an increased QoS (e.g., average retrieval latency is reduced) and, for this reason, caching can be considered a form of traffic prioritization. Hence, since the storage of caches is limited, its subdivision among several CPs may lead to discrimination. A static subdivision that assignes to each CP the same portion of storage is a neutral but ineffective appraoch, because it does not consider the different popularities of the CPs' contents. A more effective strategy consists in dividing the cache among the CPs proportionally to the popularity of their contents. However, CPs consider this information sensitive and are reluctant to disclose it. In this work, we propose a protocol based on Shamir Secret Sharing (SSS) scheme that allows the ISP to calculate the portion of cache storage that a CP is entitled to receive while guaranteeing network neutrality and resource efficiency, but without violating its privacy. The protocol is executed by the ISP, the CPs and a Regulator Authority (RA) that guarantees the actual enforcement of a fair subdivision of the cache storage and the preservation of privacy. We perform extensive simulations and prove that our approach leads to higher hit-rates (i.e., percentage of requests served by the cache) with respect to the static one. The advantages are particularly significant when the cache storage is limited.
2020-09-08
Perello, Jordi, Lopez, Albert, Careglio, Davide.  2019.  Experimenting with Real Application-specific QoS Guarantees in a Large-scale RINA Demonstrator. 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :31–36.
This paper reports the definition, setup and obtained results of the Fed4FIRE + medium experiment ERASER, aimed to evaluate the actual Quality of Service (QoS) guarantees that the clean-slate Recursive InterNetwork Architecture (RINA) can deliver to heterogeneous applications at large-scale. To this goal, a 37-Node 5G metro/regional RINA network scenario, spanning from the end-user to the server where applications run in a datacenter has been configured in the Virtual Wall experimentation facility. This scenario has initially been loaded with synthetic application traffic flows, with diverse QoS requirements, thus reproducing different network load conditions. Next,their experienced QoS metrics end-to-end have been measured with two different QTA-Mux (i.e., the most accepted candidate scheduling policy for providing RINA with its QoS support) deployment scenarios. Moreover, on this RINA network scenario loaded with synthetic application traffic flows, a real HD (1080p) video streaming demonstration has also been conducted, setting up video streaming sessions to end-users at different network locations, illustrating the perceived Quality of Experience (QoE). Obtained results in ERASER disclose that, by appropriately deploying and configuring QTA-Mux, RINA can yield effective QoS support, which has provided perfect QoE in almost all locations in our demo when assigning video traffic flows the highest (i.e., Gold) QoS Cube.
2020-08-03
Islam, Noman.  2019.  A Secure Service Discovery Scheme for Mobile ad hoc Network using Artificial Deep Neural Network. 2019 International Conference on Frontiers of Information Technology (FIT). :133–1335.

In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.

2020-04-24
Zhang, Lichen.  2018.  Modeling Cloud Based Cyber Physical Systems Based on AADL. 2018 24th International Conference on Automation and Computing (ICAC). :1—6.

Cloud-based cyber-physical systems, like vehicle and intelligent transportation systems, are now attracting much more attentions. These systems usually include large-scale distributed sensor networks covering various components and producing enormous measurement data. Lots of modeling languages are put to use for describing cyber-physical systems or its aspects, bringing contribution to the development of cyber-physical systems. But most of the modeling techniques only focuse on software aspect so that they could not exactly express the whole cloud-based cyber-physical systems, which require appropriate views and tools in its design; but those tools are hard to be used under systemic or object-oriented methods. For example, the widest used modeling language, UML, could not fulfil the above design's requirements by using the foremer's standard form. This paper presents a method designing the cloud-based cyber-physical systems with AADL, by which we can analyse, model and apply those requirements on cloud platforms ensuring QoS in a relatively highly extensible way at the mean time.

2020-02-17
Hao, Lina, Ng, Bryan.  2019.  Self-Healing Solutions for Wi-Fi Networks to Provide Seamless Handover. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :639–642.
The dynamic nature of the wireless channel poses a challenge to services requiring seamless and uniform network quality of service (QoS). Self-healing, a promising approach under the self-organizing networks (SON) paradigm, and has been shown to deal with unexpected network faults in cellular networks. In this paper, we use simple machine learning (ML) algorithms inspired by SON developments in cellular networks. Evaluation results show that the proposed approach identifies the faulty APs. Our proposed approach improves throughput by 63.6% and reduces packet loss rate by 16.6% compared with standard 802.11.
2020-01-13
Vasilev, Rusen Vasilev, Haka, Aydan Mehmed.  2019.  Enhanced Simulation Framework for Realisation of Mobility in 6LoWPAN Wireless Sensor Networks. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.
The intense incursion of the Internet of Things (IoT) into all areas of modern life has led to a need for a more detailed study of these technologies and their mechanisms of work. It is necessary to study mechanisms in order to improve QoS, security, identifying shortest routes, mobility, etc. This paper proposes an enhanced simulation framework that implements an improved mechanism for prioritising traffic on 6LoWPAN networks and the realisation of micro-mobility.
2019-09-09
Kumar, M., Bhandari, R., Rupani, A., Ansari, J. H..  2018.  Trust-Based Performance Evaluation of Routing Protocol Design with Security and QoS over MANET. 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE). :139-142.

Nowadays, The incorporation of different function of the network, as well as routing, administration, and security, is basic to the effective operation of a mobile circumstantial network these days, in MANET thought researchers manages the problems of QoS and security severally. Currently, each the aspects of security and QoS influence negatively on the general performance of the network once thought-about in isolation. In fact, it will influence the exceptionally operating of QoS and security algorithms and should influence the important and essential services needed within the MANET. Our paper outlines 2 accomplishments via; the accomplishment of security and accomplishment of quality. The direction towards achieving these accomplishments is to style and implement a protocol to suite answer for policy-based network administration, and methodologies for key administration and causing of IPsec in a very MANET.

2019-06-10
Kumar, A., Aggarwal, A., Yadav, D..  2018.  A Multi-layered Outlier Detection Model for Resource Constraint Hierarchical MANET. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–7.

For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.

2019-04-05
Konorski, J..  2018.  Double-Blind Reputation vs. Intelligent Fake VIP Attacks in Cloud-Assisted Interactions. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1637-1641.

We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.

2018-06-20
Koul, Ajay, Kaur, Harinder.  2017.  Quality of Service Oriented Secure Routing Model for Mobile Ad Hoc Networks. Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. :88–92.

Mobile Ad hoc Networks (MANETs) always bring challenges to the designers in terms of its security deployment due to their dynamic and infrastructure less nature. In the past few years different researchers have proposed different solutions for providing security to MANETs. In most of the cases however, the solution prevents either a particular attack or provides security at the cost of sacrificing the QoS. In this paper we introduce a model that deploys security in MANETs and takes care of the Quality of Services issues to some extent. We have adopted the concept of analyzing the behavior of the node as we believe that if nodes behave properly and in a coordinated fashion, the insecurity level goes drastically down. Our methodology gives the advantage of using this approach

2018-04-11
Lahbib, A., Toumi, K., Elleuch, S., Laouiti, A., Martin, S..  2017.  Link Reliable and Trust Aware RPL Routing Protocol for Internet of Things. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Internet of Things (IoT) is characterized by heterogeneous devices that interact with each other on a collaborative basis to fulfill a common goal. In this scenario, some of the deployed devices are expected to be constrained in terms of memory usage, power consumption and processing resources. To address the specific properties and constraints of such networks, a complete stack of standardized protocols has been developed, among them the Routing Protocol for Low-Power and lossy networks (RPL). However, this protocol is exposed to a large variety of attacks from the inside of the network itself. To fill this gap, this paper focuses on the design and the integration of a novel Link reliable and Trust aware model into the RPL protocol. Our approach aims to ensure Trust among entities and to provide QoS guarantees during the construction and the maintenance of the network routing topology. Our model targets both node and link Trust and follows a multidimensional approach to enable an accurate Trust value computation for IoT entities. To prove the efficiency of our proposal, this last has been implemented and tested successfully within an IoT environment. Therefore, a set of experiments has been made to show the high accuracy level of our system.

2018-03-26
Chen, K., Mao, H., Shi, X., Xu, Y., Liu, A..  2017.  Trust-Aware and Location-Based Collaborative Filtering for Web Service QoS Prediction. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:143–148.

The rapid development of cloud computing has resulted in the emergence of numerous web services on the Internet. Selecting a suitable cloud service is becoming a major problem for users especially non-professionals. Quality of Service (QoS) is considered to be the criterion for judging web services. There are several Collaborative Filtering (CF)-based QoS prediction methods proposed in recent years. QoS values among different users may vary largely due to the network and geographical location. Moreover, QoS data provided by untrusted users will definitely affect the prediction accuracy. However, most existing methods seldom take both facts into consideration. In this paper, we present a trust-aware and location-based approach for web service QoS prediction. A trust value for each user is evaluated before the similarity calculation and the location is taken into account in similar neighbors selecting. A series of experiments are performed based on a realworld QoS dataset including 339 service users and 5,825 services. The experimental analysis shows that the accuracy of our method is much higher than other CF-based methods.

2018-02-21
Leon, S., Perelló, J., Careglio, D., Tarzan, M..  2017.  Guaranteeing QoS requirements in long-haul RINA networks. 2017 19th International Conference on Transparent Optical Networks (ICTON). :1–4.

In the last years, networking scenarios have been evolving, hand-in-hand with new and varied applications with heterogeneous Quality of Service (QoS) requirements. These requirements must be efficiently and effectively delivered. Given its static layered structure and almost complete lack of built-in QoS support, the current TCP/IP-based Internet hinders such an evolution. In contrast, the clean-slate Recursive InterNetwork Architecture (RINA) proposes a new recursive and programmable networking model capable of evolving with the network requirements, solving in this way most, if not all, TCP/IP protocol stack limitations. Network providers can better deliver communication services across their networks by taking advantage of the RINA architecture and its support for QoS. This support allows providing complete information of the QoS needs of the supported traffic flows, and thus, fulfilment of these needs becomes possible. In this work, we focus on the importance of path selection to better ensure QoS guarantees in long-haul RINA networks. We propose and evaluate a programmable strategy for path selection based on flow QoS parameters, such as the maximum allowed latency and packet losses, comparing its performance against simple shortest-path, fastest-path and connection-oriented solutions.

2018-02-02
Arifeen, F. U., Ali, M., Ashraf, S..  2016.  QoS and security in VOIP networks through admission control mechanism. 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :373–380.

With the developing understanding of Information Security and digital assets, IT technology has put on tremendous importance of network admission control (NAC). In NAC architecture, admission decisions and resource reservations are taken at edge devices, rather than resources or individual routers within the network. The NAC architecture enables resilient resource reservation, maintaining reservations even after failures and intra-domain rerouting. Admission Control Networks destiny is based on IP networks through its Security and Quality of Service (QoS) demands for real time multimedia application via advance resource reservation techniques. To achieve Security & QoS demands, in real time performance networks, admission control algorithm decides whether the new traffic flow can be admitted to the network or not. Secure allocation of Peer for multimedia traffic flows with required performance is a great challenge in resource reservation schemes. In this paper, we have proposed our model for VoIP networks in order to achieve security services along with QoS, where admission control decisions are taken place at edge routers. We have analyzed and argued that the measurement based admission control should be done at edge routers which employs on-demand probing parallel from both edge routers to secure the source and destination nodes respectively. In order to achieve Security and QoS for a new call, we choose various probe packet sizes for voice and video calls respectively. Similarly a technique is adopted to attain a security allocation approach for selecting an admission control threshold by proposing our admission control algorithm. All results are tested on NS2 based simulation to evalualate the network performance of edge router based upon network admission control in VoIP traffic.

2017-12-28
Zheng, J., Okamura, H., Dohi, T..  2016.  Mean Time to Security Failure of VM-Based Intrusion Tolerant Systems. 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops (ICDCSW). :128–133.

Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.

Ouffoué, G., Ortiz, A. M., Cavalli, A. R., Mallouli, W., Domingo-Ferrer, J., Sánchez, D., Zaidi, F..  2016.  Intrusion Detection and Attack Tolerance for Cloud Environments: The CLARUS Approach. 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops (ICDCSW). :61–66.

The cloud has become an established and widespread paradigm. This success is due to the gain of flexibility and savings provided by this technology. However, the main obstacle to full cloud adoption is security. The cloud, as many other systems taking advantage of the Internet, is also facing threats that compromise data confidentiality and availability. In addition, new cloud-specific attacks have emerged and current intrusion detection and prevention mechanisms are not enough to protect the complex infrastructure of the cloud from these vulnerabilities. Furthermore, one of the promises of the cloud is the Quality of Service (QoS) by continuous delivery, which must be ensured even in case of intrusion. This work presents an overview of the main cloud vulnerabilities, along with the solutions proposed in the context of the H2020 CLARUS project in terms of monitoring techniques for intrusion detection and prevention, including attack-tolerance mechanisms.

2017-10-03
Das, M. Swami, Govardhan, A., Lakshmi, D. Vijaya.  2016.  Best Practices for Web Applications to Improve Performance of QoS. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :123:1–123:9.

Web Service Architecture gives a compatible and scalable structure for web service interactions with performance, responsiveness, reliability and security to make a quality of software design. Systematic quantitative approaches have been discussed for designing and developing software systems that meet performance objectives. Many companies have successfully applied these techniques in different applications to achieve better performance in terms of financial, customer satisfaction, and other benefits. This paper describes the architecture, design, implementation, integration testing, performance and maintenance of new applications. The most successful best practices used in world class organizations are discussed. This will help the application, component, and software system designers to develop web applications and fine tune the existing methods in line with the best practices. In business process automation, many standard practices and technologies have been used to model and execute business processes. The emerging technology is web applications technology which provides a great flexibility for development of interoperable environment services. In this paper we propose a Case study of Automatic Gas Booking system, a business process development strategy and best practices used in development of software components used in web applications. The classification of QWS dataset with 2507 records, service invocations, integration and security for web applications have been discussed.

2017-03-08
Shen, M., Liu, F..  2015.  Query of Uncertain QoS of Web Service. 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associate. :1780–1785.

Quality of service (QoS) has been considered as a significant criterion for querying among functionally similar web services. Most researches focus on the search of QoS under certain data which may not cover some practical scenarios. Recent approaches for uncertain QoS of web service deal with discrete data domain. In this paper, we try to build the search of QoS under continuous probability distribution. We offer the definition of two kinds of queries under uncertain QoS and form the optimization approaches for specific distributions. Based on that, the search is extended to general cases. With experiments, we show the feasibility of the proposed methods.