Visible to the public Biblio

Filters: Keyword is Heart rate  [Clear All Filters]
2018-12-03
Molka-Danielsen, J., Engelseth, P., Olešnaníková, V., Šarafín, P., Žalman, R..  2017.  Big Data Analytics for Air Quality Monitoring at a Logistics Shipping Base via Autonomous Wireless Sensor Network Technologies. 2017 5th International Conference on Enterprise Systems (ES). :38–45.
The indoor air quality in industrial workplace buildings, e.g. air temperature, humidity and levels of carbon dioxide (CO2), play a critical role in the perceived levels of workers' comfort and in reported medical health. CO2 can act as an oxygen displacer, and in confined spaces humans can have, for example, reactions of dizziness, increased heart rate and blood pressure, headaches, and in more serious cases loss of consciousness. Specialized organizations can be brought in to monitor the work environment for limited periods. However, new low cost wireless sensor network (WSN) technologies offer potential for more continuous and autonomous assessment of industrial workplace air quality. Central to effective decision making is the data analytics approach and visualization of what is potentially, big data (BD) in monitoring the air quality in industrial workplaces. This paper presents a case study that monitors air quality that is collected with WSN technologies. We discuss the potential BD problems. The case trials are from two workshops that are part of a large on-shore logistics base a regional shipping industry in Norway. This small case study demonstrates a monitoring and visualization approach for facilitating BD in decision making for health and safety in the shipping industry. We also identify other potential applications of WSN technologies and visualization of BD in the workplace environments; for example, for monitoring of other substances for worker safety in high risk industries and for quality of goods in supply chain management.
2018-06-11
Zeng, J., Dong, L., Wu, Y., Chen, H., Li, C., Wang, S..  2017.  Privacy-Preserving and Multi-Dimensional Range Query in Two-Tiered Wireless Sensor Networks. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–7.

With the advancement of sensor electronic devices, wireless sensor networks have attracted more and more attention. Range query has become a significant part of sensor networks due to its availability and convenience. However, It is challenging to process range query while still protecting sensitive data from disclosure. Existing work mainly focuses on privacy- preserving range query, but neglects the damage of collusion attacks, probability attacks and differential attacks. In this paper, we propose a privacy- preserving, energy-efficient and multi-dimensional range query protocol called PERQ, which not only achieves data privacy, but also considers collusion attacks, probability attacks and differential attacks. Generalized distance-based and modular arithmetic range query mechanism are used. In addition, a novel cyclic modular verification scheme is proposed to verify the data integrity. Extensive theoretical analysis and experimental results confirm the high performance of PERQ in terms of energy efficiency, security and accountability requirements.

2018-04-02
Vhaduri, S., Poellabauer, C..  2017.  Wearable Device User Authentication Using Physiological and Behavioral Metrics. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–6.

Wearables, such as Fitbit, Apple Watch, and Microsoft Band, with their rich collection of sensors, facilitate the tracking of healthcare- and wellness-related metrics. However, the assessment of the physiological metrics collected by these devices could also be useful in identifying the user of the wearable, e.g., to detect unauthorized use or to correctly associate the data to a user if wearables are shared among multiple users. Further, researchers and healthcare providers often rely on these smart wearables to monitor research subjects and patients in their natural environments over extended periods of time. Here, it is important to associate the sensed data with the corresponding user and to detect if a device is being used by an unauthorized individual, to ensure study compliance. Existing one-time authentication approaches using credentials (e.g., passwords, certificates) or trait-based biometrics (e.g., face, fingerprints, iris, voice) might fail, since such credentials can easily be shared among users. In this paper, we present a continuous and reliable wearable-user authentication mechanism using coarse-grain minute-level physical activity (step counts) and physiological data (heart rate, calorie burn, and metabolic equivalent of task). From our analysis of 421 Fitbit users from a two-year long health study, we are able to statistically distinguish nearly 100% of the subject-pairs and to identify subjects with an average accuracy of 92.97%.

Zhang, Q., Liang, Z..  2017.  Security Analysis of Bluetooth Low Energy Based Smart Wristbands. 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST). :421–425.

Wearable devices are being more popular in our daily life. Especially, smart wristbands are booming in the market recently, which can be used to monitor health status, track fitness data, or even do medical tests, etc. For this reason, smart wristbands can obtain a lot of personal data. Hence, users and manufacturers should pay more attention to the security aspects of smart wristbands. However, we have found that some Bluetooth Low Energy based smart wristbands have very weak or even no security protection mechanism, therefore, they are vulnerable to replay attacks, man-in-the-middle attacks, brute-force attacks, Denial of Service (DoS) attacks, etc. We have investigated four different popular smart wristbands and a smart watch. Among them, only the smart watch is protected by some security mechanisms while the other four smart wristbands are not protected. In our experiments, we have also figured out all the message formats of the controlling commands of these smart wristbands and developed an Android software application as a testing tool. Powered by the resolved command formats, this tool can directly control these wristbands, and any other wristbands of these four models, without using the official supporting applications.