Visible to the public Biblio

Filters: Keyword is AES  [Clear All Filters]
Simjanović, Dušan J., Milošević, Dušan M., Milošević, Mimica R..  2021.  Fuzzy AHP based Ranking of Cryptography Indicators. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :237—240.
The progression of cryptographic attacks in the ICT era doubtless leads to the development of new cryptographic algorithms and assessment, and evaluation of the existing ones. In this paper, the artificial intelligence application, through the fuzzy analytic hierarchy process (FAHP) implementation, is used to rank criteria and sub-criteria on which the algorithms are based to determine the most promising criteria and optimize their use. Out of fifteen criteria, security soundness, robustness and hardware failure distinguished as significant ones.
Khan, Mohd, Chen, Yu.  2021.  A Randomized Switched-Mode Voltage Regulation System for IoT Edge Devices to Defend Against Power Analysis based Side Channel Attacks. 2021 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1771–1776.
The prevalence of Internet of Things (IoT) allows heterogeneous and lightweight smart devices to collaboratively provide services with or without human intervention. With an ever-increasing presence of IoT-based smart applications and their ubiquitous visibility from the Internet, user data generated by highly connected smart IoT devices also incur more concerns on security and privacy. While a lot of efforts are reported to develop lightweight information assurance approaches that are affordable to resource-constrained IoT devices, there is not sufficient attention paid from the aspect of security solutions against hardware-oriented attacks, i.e. side channel attacks. In this paper, a COTS (commercial off-the-shelf) based Randomized Switched-Mode Voltage Regulation System (RSMVRS) is proposed to prevent power analysis based side channel attacks (P-SCA) on bare metal IoT edge device. The RSMVRS is implemented to direct power to IoT edge devices. The power is supplied to the target device by randomly activating power stages with random time delays. Therefore, the cryptography algorithm executing on the IoT device will not correlate to a predictable power profile, if an adversary performs a SCA by measuring the power traces. The RSMVRS leverages COTS components and experimental study has verified the correctness and effectiveness of the proposed solution.
Hammad, Mohamed, Elmedany, Wael, Ismail, Yasser.  2021.  Design and Simulation of AES S-Box Towards Data Security in Video Surveillance Using IP Core Generator. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :469–476.
Broadcasting applications such as video surveillance systems are using High Definition (HD) videos. The use of high-resolution videos increases significantly the data volume of video coding standards such as High-Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC), which increases the challenge for storing, processing, encrypting, and transmitting these data over different communication channels. Video compression standards use state-of-the-art techniques to compress raw video sequences more efficiently, such techniques require high computational complexity and memory utilization. With the emergent of using HEVC and video surveillance systems, many security risks arise such as man-in-the-middle attacks, and unauthorized disclosure. Such risks can be mitigated by encrypting the traffic of HEVC. The most widely used encryption algorithm is the Advanced Encryption Standard (AES). Most of the computational complexity in AES hardware-implemented is due to S-box or sub-byte operation and that because it needs many resources and it is a non-linear structure. The proposed AES S-box ROM design considers the latest HEVC used for homeland security video surveillance systems. This paper presents different designs for VHDL efficient ROM implementation of AES S-box using IP core generator, ROM components, and using Functions, which are all supported by Xilinx. IP core generator has Block Memory Generator (BMG) component in its library. S-box IP core ROM is implemented using Single port block memory. The S-box lookup table has been used to fill the ROM using the .coe file format provided during the initialization of the IP core ROM. The width is set to 8-bit to address the 256 values while the depth is set to 8-bit which represents the data filed in the ROM. The whole design is synthesized using Xilinx ISE Design Suite 14.7 software, while Modelism (version10.4a) is used for the simulation process. The proposed IP core ROM design has shown better memory utilization compared to non-IP core ROM design, which is more suitable for memory-intensive applications. The proposed design is suitable for implementation using the FPGA ROM design. Hardware complexity, frequency, memory utilization, and delay are presented in this paper.
Behl, Ritin, Pandey, Sachi, Sinha, Amit.  2021.  An Hybrid Approach to Insure Data Integrity on Outsourced Data using Symmetric Key Cryptography. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :44–48.
Cloud technology is advancing rapidly because of it’s capability to replace the traditional computing techniques. Cloud offers various kinds of services for the user that are being used. In this research paper, storage as a service provided by cloud is examined as the data of the owner is being shared to the cloud so we have to ensure that data integrity is being maintained. In order to have a robust mechanism that offers a secure pathway for sharing data different encryption algorithms have been utilized. We investigate all the suitable algorithms with various combinations because any single algorithm is prone to some kind of attack. Testing of these algorithms is done by analyzing the parameters such as time required for execution, use of computational resources, key management, etc. Finally the best one that stands and fulfill all the criteria in a reasonable manner is selected for the purpose of storage.
Kumar, Anuj.  2021.  Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1529—1535.
Cloud computing has changed how humans use their technological expertise. It indicates a transition in the use of computers as utilitarian instruments with radical applications in general. However, as technology advances, the number of hazards increases and crucial data protection has become increasingly challenging due to extensive internet use. Every day, new encryption methods are developed, and much research is carried out in the search for a reliable cryptographic algorithm. The AES algorithm employs an overly simplistic algebraic structure. Each block employs the same encryption scheme, and AES is subject to brute force and MITM attacks. AES have not provide d sufficient levels of security; the re is still a need to put further le vels of protection over them. In this regard, DNA cryptography allows you to encrypt a large quantity of data using only a few amount of DNA. This paper combines two methodologies, a DNA-based algorithm and the AES Algorithm, to provide a consi derably more secure data security platform. The DNA cryptography technology and the AES approach are utilized for data encryption and decryption. To improve cloud security, DNA cryptography and AES provide a technologically ideal option.
Bura, Romie Oktovianus, Lahallo, Cardian Althea Stephanie.  2021.  Design and Development of Digital Image Security Using AES Algorithm with Discrete Wavelet Transformation Method. 2021 6th International Workshop on Big Data and Information Security (IWBIS). :153—158.
Network Centric Warfare (NCW) is a design that supports information excellence for the concept of military operations. Network Centric Warfare is currently being developed as the basis for the operating concept, namely multidimensional operations. TNI operations do not rely on conventional warfare. TNI operations must work closely with the TNI Puspen team, territorial intelligence, TNI cyber team, and support task force. Sending digital images sent online requires better techniques to maintain confidentiality. The purpose of this research is to design digital image security with AES cryptography and discrete wavelet transform method on interoperability and to utilize and study discrete wavelet transform method and AES algorithm on interoperability for digital image security. The AES cryptography technique in this study is used to protect and maintain the confidentiality of the message while the Discrete Wavelet Transform in this study is used to reduce noise by applying a discrete wavelet transform, which consists of three main steps, namely: image decomposition, thresholding process and image reconstruction. The result of this research is that Digital Image Security to support TNI interoperability has been produced using the C \# programming language framework. NET and Xampp to support application development. Users can send data in the form of images. Discrete Wavelet Transformation in this study is used to find the lowest value against the threshold so that the resulting level of security is high. Testing using the AESS algorithm to encrypt and decrypt image files using key size and block size.
Pokharana, Anchal, Sharma, Samiksha.  2021.  Encryption, File Splitting and File compression Techniques for Data Security in virtualized environment. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :480—485.
Nowadays cloud computing has become the crucial part of IT and most important thing is information security in cloud environment. Range of users can access the facilities and use cloud according to their feasibility. Cloud computing is utilized as safe storage of information but still data security is the biggest concern, for example, secrecy, data accessibility, data integrity is considerable factor for cloud storage. Cloud service providers provide the facility to clients that they can store the data on cloud remotely and access whenever required. Due to this facility, it gets necessary to shield or cover information from unapproved access, hackers or any sort of alteration and malevolent conduct. It is inexpensive approach to store the valuable information and doesn't require any hardware and software to hold the data. it gives excellent work experience but main measure is just security. In this work security strategies have been proposed for cloud data protection, capable to overpower the shortcomings of conventional data protection algorithms and enhancing security using steganography algorithm, encryption decryption techniques, compression and file splitting technique. These techniques are utilized for effective results in data protection, Client can easily access our developed desktop application and share the information in an effective and secured way.
Pathak, Adwait, Patil, Tejas, Pawar, Shubham, Raut, Piyush, Khairnar, Smita.  2021.  Secure Authentication using Zero Knowledge Proof. 2021 Asian Conference on Innovation in Technology (ASIANCON). :1—8.
Zero- Knowledge Proof is a cryptographic protocol exercised to render privacy and data security by securing the identity of users and using services anonymously. It finds numerous applications; authentication is one of them. A Zero-Knowledge Proof-based authentication system is discussed in this paper. Advanced Encryption Standard (AES) and Secure Remote Password (SRP) protocol have been used to design and build the ZKP based authentication system. SRP is a broadly used Password Authenticated Key Exchange (PAKE) protocol. The proposed method overcomes several drawbacks of traditional and commonly used authentication systems such as a simple username and plaintext password-based system, multi-factor authentication system and others.
Setiawan, Fauzan Budi, Magfirawaty.  2021.  Securing Data Communication Through MQTT Protocol with AES-256 Encryption Algorithm CBC Mode on ESP32-Based Smart Homes. 2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE). :166–170.
The Internet of Things (IoT) is a technology that allows connection between devices using the internet to collect and exchange data with each other. Privacy and security have become the most pressing issues in the IoT network, especially in the smart home. Nevertheless, there are still many smart home devices that have not implemented security and privacy policies. This study proposes a remote sensor control system built on ESP32 to implement a smart home through the Message Queuing Telemetry Transport(MQTT) protocol by applying the Advanced Encryption Standard (AES) algorithm with a 256-bit key. It addresses security issues in the smart home by encrypting messages sent from users to sensors. Besides ESP32, the system implementation also uses Raspberry Pi and smartphone with Android applications. The network was analyzed using Wireshark, and it showed that the message sent was encrypted. This implementation could prevent brute force attacks, with the result that it could guarantee the confidentiality of a message. Meanwhile, from several experiments conducted in this study, the difference in the average time of sending encrypted and unencrypted messages was not too significant, i.e., 20 ms.
Ruchkin, V., Soldatov, G., Fulin, V., Kostrov, B., Ruchkina, E..  2020.  Macros for Coding Information Encryption Amp; Decryption in Trusted Platform Module. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
This article describes the process assembling of Encryption & Decryption In Trusted Platform Module of encoding information in NM640X \textregistered. Encoding of information, carried out in assembly language according to Gost 28147-89. It is a realisation of standard GOST 28147-89- Russian state symmetric key block cipher. GOST 28147-89 has 64-bit to access the kernel, trust, and allocated memory in the BlockSize and 256-bit KeySize.
Mestiri, Hassen, Salah, Yahia, Baroudi, Achref Addali.  2020.  A Secure Network Interface for on-Chip Systems. 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :90–94.
This paper presents a self-securing decentralized on-chip network interface (NI) architecture to Multicore System-on-Chip (McSoC) platforms. To protect intra-chip communication within McSoC, security framework proposal resides in initiator and target NIs. A comparison between block cipher and lightweight cryptographic algorithms is then given, so we can figure out the most suitable cipher for network-on-chip (NoC) architectures. AES and LED security algorithms was a subject of this comparison. The designs are developed in Xilinx ISE 14.7 tool using VHDL language.
Kulkarni, Pallavi, Khanai, Rajashri, Bindagi, Gururaj.  2020.  A Hybrid Encryption Scheme for Securing Images in the Cloud. 2020 International Conference on Inventive Computation Technologies (ICICT). :795–800.
With the introduction of Cloud computing, a new era of computing has begun. Cloud has the ability to provide flexible, cost effective pay-as-you-go service. In the modern day computing, outsourcing of data/multimedia into the cloud has become an effective trend as cloud provides storage as a service, platform/software as a service, infrastructure as a service etc. Seamless exchange of data /multimedia is made possible ensuring the data available anytime, anywhere. Even though cloud based services offer many advantages, data owners are still hesitant to keep their data with the third party. Confidentiality, Integrity, Privacy and Non-repudiation are the major concerns of the outsourced data. To secure the data exchange between users and the cloud, many traditional security approaches are proposed. In this paper, a hybrid encryption technique to secure the images is proposed. The scheme uses Elliptic Curve Cryptography to generate the secret key, which in turn used for DES and AES algorithms.
Hussain, Iqra, Pandey, Nitin, Singh, Ajay Vikram, Negi, Mukesh Chandra, Rana, Ajay.  2020.  Presenting IoT Security based on Cryptographic Practices in Data Link Layer in Power Generation Sector. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1085—1088.
With increasing improvements in different areas, Internet control has been making prominent impacts in almost all areas of technology that has resulted in reasonable advances in every discrete field and therefore the industries too are proceeding to the field of IoT (Internet of Things), in which the communication among heterogeneous equipments is via Internet broadly. So imparting these advances of technology in the Power Station Plant sectors i.e. the power plants will be remotely controlled additional to remote monitoring, with no corporal place as a factor for controlling or monitoring. But imparting this technology the security factor needs to be considered as a basic and such methods need to be put into practice that the communication in such networks or control systems is defended against any third party interventions while the data is being transferred from one device to the other device through the internet (Unrestricted Channel). The paper puts forward exercising RSA,DES and AES encrypting schemes for the purpose of data encryption at the Data Link Layer i.e. before it is transmitted to the other device through Internet and as a result of this the security constraints are maintained. The records put to use have been supplied by NTPC, Dadri, India plus simulation part was executed employing MATLAB.
Arpaia, Pasquale, Bonavolontà, Francesco, Cioffi, Antonella.  2020.  Security vulnerability in Internet of Things sensor networks protected by Advanced Encryption Standard. 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT. :452—457.
In the new era of Internet of Things, the emerging of smart devices makes security and privacy the first requirements and the major challenges of a distributed network. Despite the implementation of security measures, as encryption mechanisms protecting sensor data, and cryptographic algorithms, various attacks seem to undermine the IoT devices security. This paper reports the preliminary results of a side-channel attack (scatter attack) addressed on an 8-bit IoT microcontroller protected by the Advanced Encryption Standard. The attack, based on an high-SNR data acquisition micro-system and a suitable statistical analysis, allows to discover part of the encryption key, demonstrating the security vulnerability of Internet of Things sensor networks protected by the AES.
Kumar, A..  2020.  A Novel Privacy Preserving HMAC Algorithm Based on Homomorphic Encryption and Auditing for Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :198–202.
Cloud is the perfect way to hold our data every day. Yet the confidentiality of our data is a big concern in the handling of cloud data. Data integrity, authentication and confidentiality are basic security threats in the cloud. Cryptography techniques and Third Party Auditor (TPA) are very useful to impose the integrity and confidentiality of data. In this paper, a system is proposed Enhancing data protection that is housed in cloud computing. The suggested solution uses the RSA algorithm and the AES algorithm to encrypt user data. The hybridization of these two algorithms allows better data protection before it is stored in the cloud. Secure hash algorithm 512 is used to compute the Hash Message Authentication Code (HMAC). A stable audit program is also introduced for Third Party Auditor (TPA) use. The suggested algorithm is applied in python programming and tested in a simple sample format. It is checked that the proposed algorithm functions well to guarantee greater data protection.
Wang, M., Xiao, J., Cai, Z..  2020.  An effective technique preventing differential cryptanalysis attack. 2020 IEEE 29th Asian Test Symposium (ATS). :1—6.
In this paper, an adaptive scan chain structure based plaintext analysis technique is proposed. The technology is implemented by three circuits, including adaptive scan chain circuit, plaintext analysis circuit and controller circuit. The plaintext is analyzed whether meet the characteristics of the differential cryptanalysis in the plaintext analysis module. The adaptive scan chain contains MUX, XOR and traditional scan chain, which is easy to implement. If the last bit of two plaintexts differs by one, the adaptive scan chain is controlled to input them into different scan chain. Compared with complicated scan chain, the structure of adaptive scan chain is variable and can mislead attackers who use differential cryptanalysis attack. Through experimental analysis, it is proved that the security of the adaptive scan chain structure is greatly improved.
Karthikeyan, S. Paramasivam, El-Razouk, H..  2020.  Horizontal Correlation Analysis of Elliptic Curve Diffie Hellman. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :511–519.
The world is facing a new revolutionary technology transition, Internet of things (IoT). IoT systems requires secure connectivity of distributed entities, including in-field sensors. For such external devices, Side Channel Analysis poses a potential threat as it does not require complete knowledge about the crypto algorithm. In this work, we perform Horizontal Correlation Power Analysis (HCPA) which is a type of Side Channel Analysis (SCA) over the Elliptic Curve Diffie Hellman (ECDH) key exchange protocol. ChipWhisperer (CW) by NewAE Technologies is an open source toolchain which is utilized to perform the HCPA by using CW toolchain. To best of our knowledge, this is the first attempt to implemented ECDH on Artix-7 FPGA for HCPA. We compare our correlation results with the results from AES -128 bits provided by CW. Our point of attack is the Double and Add algorithm which is used to perform Scalar multiplication in ECC. We obtain a maximum correlation of 7% for the key guess using the HCPA. We also discuss about the possible cause for lower correlation and few potentials ways to improve it. In Addition to HCPA we also perform Simple Power Analysis (SPA) (visual) for ECDH, to guess the trailing zeros in the 128-bit secret key for different power traces.
Bhoi, G., Bhavsar, R., Prajapati, P., Shah, P..  2020.  A Review of Recent Trends on DNA Based Cryptography. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :815–822.
One of the emerging methodologies nowadays in the field of cryptography based on human DNA sequences. As the research says that even a limited quantity of DNA can store gigantic measure of information likewise DNA can process and transmit the information, such potential of DNA give rise to the idea of DNA cryptography. A synopsis of the research carried out in DNA based security presented in this paper. Included deliberation contain encryption algorithms based on random DNA, chaotic systems, polymerase chain reaction, coupled map lattices, and other common encryption algorithms. Purpose of algorithms are specific or general as some of them are only designed to encrypt the images or more specific images like medical images or text data and others designed to use it as general for images and text data. We discussed divergent techniques that proposed earlier based on random sample DNA, medical image encryption, image encryption, and cryptanalysis done on various algorithms. With the help of this paper, one can understand the existing algorithms and can design a DNA based encryption algorithm.
ManJiang, D., Kai, C., ZengXi, W., LiPeng, Z..  2020.  Design of a Cloud Storage Security Encryption Algorithm for Power Bidding System. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1875–1879.
To solve the problem of poor security and performance caused by traditional encryption algorithm in the cloud data storage of power bidding system, we proposes a hybrid encryption method based on symmetric encryption and asymmetric encryption. In this method, firstly, the plaintext upload file is divided into several blocks according to the proportion, then the large file block is encrypted by symmetrical encryption algorithm AES to ensure the encryption performance, and then the small file block and AES key are encrypted by asymmetric encryption algorithm ECC to ensure the file encryption strength and the security of key transmission. Finally, the ciphertext file is generated and stored in the cloud storage environment to prevent sensitive files Pieces from being stolen and destroyed. The experimental results show that the hybrid encryption method can improve the anti-attack ability of cloud storage files, ensure the security of file storage, and have high efficiency of file upload and download.
Qiu, J., Lu, X., Lin, J..  2019.  Optimal Selection of Cryptographic Algorithms in Blockchain Based on Fuzzy Analytic Hierarchy Process. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :208–212.
As a collection of innovative technologies, blockchain has solved the problem of reliable transmission and exchange of information on untrusted networks. The underlying implementation is the basis for the reliability of blockchain, which consists of various cryptographic algorithms for the use of identity authentication and privacy protection of distributed ledgers. The cryptographic algorithm plays a vital role in the blockchain, which guarantees the confidentiality, integrity, verifiability and non-repudiation of the blockchain. In order to get the most suitable cryptographic algorithm for the blockchain system, this paper proposed a method using Fuzzy Analytic Hierarchy Process (FAHP) to evaluate and score the comprehensive performance of the three types of cryptographic algorithms applied in the blockchain, including symmetric cryptographic algorithms, asymmetric cryptographic algorithms and hash algorithms. This paper weighs the performance differences of cryptographic algorithms considering the aspects of security, operational efficiency, language and hardware support and resource consumption. Finally, three cryptographic algorithms are selected that are considered to be the most suitable ones for block-chain systems, namely ECDSA, sha256 and AES. This result is also consistent with the most commonly used cryptographic algorithms in the current blockchain development direction. Therefore, the reliability and practicability of the algorithm evaluation pro-posed in this paper has been proved.
Karthiga, K., Balamurugan, G., Subashri, T..  2020.  Computational Analysis of Security Algorithm on 6LowPSec. 2020 International Conference on Communication and Signal Processing (ICCSP). :1437–1442.
In order to the development of IoT, IETF developed a standard named 6LoWPAN for increase the usage of IPv6 to the tiny and smart objects with low power. Generally, the 6LoWPAN radio link needs end to end (e2e) security for its IPv6 communication process. 6LoWPAN requires light weight variant of security solutions in IPSec. A new security approach of 6LoWPAN at adaptation layer to provide e2e security with light weight IPSec. The existing security protocol IPsec is not suitable for its 6LoWPAN IoT environment because it has heavy restrictions on memory, power, duty cycle, additional overhead transmission. The IPSec had packet overhead problem due to share the secret key between two communicating peers by IKE (Internet Key Exchange) protocol. Hence the existing security protocol IPSec solutions are not suitable for lightweight-based security need in 6LoWPAN IoT. This paper describes 6LowPSec protocol with AES-CCM (Cipher block chaining Message authentication code with Counter mode) cryptographic algorithm with key size of 128 bits with minimum power consumption and duty cycle.
Chen, S., Hu, W., Li, Z..  2019.  High Performance Data Encryption with AES Implementation on FPGA. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :149—153.

Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.

Kadhim, H., Hatem, M. A..  2019.  Secure Data Packet in MANET Based Chaos-Modified AES Algorithm. 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). :208–213.
Security is one of the more challenging problem for wireless Ad-Hoc networks specially in MANT due their features like dynamic topology, no centralized infrastructure, open architecture, etc. that make its more prone to different attacks. These attacks can be passive or active. The passive attack it hard to detect it in the network because its targets the confidential of data packet by eavesdropping on it. Therefore, the privacy preservation for data packets payload which it transmission over MANET has been a major part of concern. especially for safety-sensitive applications such as, privacy conference meetings, military applications, etc. In this paper it used symmetric cryptography to provide privacy for data packet by proposed modified AES based on five proposed which are: Key generation based on multi chaotic system, new SubByte, new ShiftRows, Add-two-XOR, Add-Shiftcycl.
Farrag, Sara, Alexan, Wassim, Hussein, Hisham H..  2019.  Triple-Layer Image Security Using a Zigzag Embedding Pattern. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–8.
This paper proposes a triple-layer, high capacity, message security scheme. The first two layers are of a cryptographic nature, whereas the third layer is of a steganographic nature. In the first layer, AES-128 encryption is performed on the secret message. In the second layer, a chaotic logistic map encryption is applied on the output of the first secure layer to increase the security of the scheme. In the third layer of security, a 2D image steganography technique is performed, where the least significant bit (LSB) -embedding is done according to a zigzag pattern in each of the three color planes of the cover image (i.e. RGB). The distinguishing feature of the proposed scheme is that the secret data is hidden in a zigzag manner that cannot be predicted by a third party. Moreover, our scheme achieves higher values of peak signal to noise ratio (PPSNR), mean square error (MSE), the structural similarity index metric (SSIM), normal cross correlation (NCC) and image fidelity (IF) compared to its counterparts form the literature. In addition, a histogram analysis as well as the high achieved capacity are magnificent indicators for a reliable and high capacity steganographic scheme.
Li, Ge, Iyer, Vishnuvardhan, Orshansky, Michael.  2019.  Securing AES against Localized EM Attacks through Spatial Randomization of Dataflow. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :191—197.
A localized electromagnetic (EM) attack is a potent threat to security of embedded cryptographic implementations. The attack utilizes high resolution EM probes to localize and exploit information leakage in sub-circuits of a system, providing information not available in traditional EM and power attacks. In this paper, we propose a countermeasure based on randomizing the assignment of sensitive data to parallel datapath components in a high-performance implementation of AES. In contrast to a conventional design where each state register byte is routed to a fixed S-box, a permutation network, controlled by a transient random value, creates a dynamic random mapping between the state registers and the set of S-boxes. This randomization results in a significant reduction of exploitable leakage.We demonstrate the countermeasure's effectiveness under two attack scenarios: a more powerful attack that assumes a fully controlled access to an attacked implementation for building a priori EM-profiles, and a generic attack based on the black-box model. Spatial randomization leads to a 150× increase of the minimum traces to disclosure (MTD) for the profiled attack and a 3.25× increase of MTD for the black-box model attack.