Visible to the public Biblio

Filters: Keyword is edge  [Clear All Filters]
Vuppalapati, C., Ilapakurti, A., Kedari, S., Vuppalapati, R., Vuppalapati, J., Kedari, S..  2020.  The Role of Combinatorial Mathematical Optimization and Heuristics to improve Small Farmers to Veterinarian access and to create a Sustainable Food Future for the World. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :214–221.
The Global Demand for agriculture and dairy products is rising. Demand is expected to double by 2050. This will challenge agriculture markets in a way we have not seen before. For instance, unprecedented demand to increase in dairy farm productivity of already shrinking farms, untethered perpetual access to veterinarians by small dairy farms, economic engines of the developing countries, for animal husbandry and, finally, unprecedented need to increase productivity of veterinarians who're already understaffed, over-stressed, resource constrained to meet the current global dairy demands. The lack of innovative solutions to address the challenge would result in a major obstacle to achieve sustainable food future and a colossal roadblock ending economic disparities. The paper proposes a novel innovative data driven framework cropped by data generated using dairy Sensors and by mathematical formulations using Solvers to generate an exclusive veterinarian daily farms prioritized visit list so as to have a greater coverage of the most needed farms performed in-time and improve small farmers access to veterinarians, a precious and highly shortage & stressed resource.
Zhou, Z., Yang, Y., Cai, Z., Yang, Y., Lin, L..  2019.  Combined Layer GAN for Image Style Transfer*. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM). :1—3.

Image style transfer is an increasingly interesting topic in computer vision where the goal is to map images from one style to another. In this paper, we propose a new framework called Combined Layer GAN as a solution of dealing with image style transfer problem. Specifically, the edge-constraint and color-constraint are proposed and explored in the GAN based image translation method to improve the performance. The motivation of the work is that color and edge are fundamental vision factors for an image, while in the traditional deep network based approach, there is a lack of fine control of these factors in the process of translation and the performance is degraded consequently. Our experiments and evaluations show that our novel method with the edge and color constrains is more stable, and significantly improves the performance compared with the traditional methods.

Uddin, Mostafa, Nadeem, Tamer, Nukavarapu, Santosh.  2019.  Extreme SDN Framework for IoT and Mobile Applications Flexible Privacy at the Edge. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1–11.
With the current significant penetration of mobile devices (i.e. smartphones and tablets) and the tremendous increase in the number of the corresponding mobile applications, they have become an indispensable part of our lives. Nowadays, there is a significant growth in the number of sensitive applications such as personal health applications, personal financial applications, home monitoring applications, etc. In addition, with the significant growth of Internet-of-Things (IoT) devices, smartphones and the corresponding applications are widely considered as the Internet gateways for these devices. Mobile devices mostly use wireless LANs (WLANs) (i.e., WiFi networks) as the prominent network interface to the Internet. However, due to the broadcast nature of WiFi links, wireless traffics are exposed to any eavesdropping adversary within the WLAN. Despite WiFi encryption, studies show that application usage information could be inferred from the encrypted wireless traffic. The leakage of this sensitive information is very serious issue that will significantly impact users' privacy and security. In addressing this privacy concern, we design and develop a lightweight programmable privacy framework, called PrivacyGuard. PrivacyGuard is inspired by the vision of pushing the Software Defined Network (SDN)-like paradigm all the way to wireless network edge, is designed to support of adopting privacy preserving policies to protect the wireless communication of the sensitive applications. In this paper, we demonstrate and evaluate a prototype of PrivacyGuard framework on Android devices showing the flexibility and efficiency of the framework.
Narendra, Nanjangud C., Shukla, Anshu, Nayak, Sambit, Jagadish, Asha, Kalkur, Rachana.  2019.  Genoma: Distributed Provenance as a Service for IoT-based Systems. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :755–760.
One of the key aspects of IoT-based systems, which we believe has not been getting the attention it deserves, is provenance. Provenance refers to those actions that record the usage of data in the system, along with the rationale for said usage. Historically, most provenance methods in distributed systems have been tightly coupled with those of the underlying data processing frameworks in such systems. However, in this paper, we argue that IoT provenance requires a different treatment, given the heterogeneity and dynamism of IoT-based systems. In particular, provenance in IoT-based systems should be decoupled as far as possible from the underlying data processing substrates in IoT-based systems.To that end, in this paper, we present Genoma, our ongoing work on a system for provenance-as-a-service in IoT-based systems. By "provenance-as-a-service" we mean the following: distributed provenance across IoT devices, edge and cloud; and agnostic of the underlying data processing substrate. Genoma comprises a set of services that act together to provide useful provenance information to users across the system. We also show how we are realizing Genoma via an implementation prototype built on Apache Atlas and Tinkergraph, through which we are investigating several key research issues in distributed IoT provenance.
Rashid, Rasber Dh., Majeed, Taban F..  2019.  Edge Based Image Steganography: Problems and Solution. 2019 International Conference on Communications, Signal Processing, and Their Applications (ICCSPA). :1–5.

Steganography means hiding secrete message in cover object in a way that no suspicious from the attackers, the most popular steganography schemes is image steganography. A very common questions that asked in the field are: 1- what is the embedding scheme used?, 2- where is (location) the secrete messages are embedded?, and 3- how the sender will tell the receiver about the locations of the secrete message?. Here in this paper we are deal with and aimed to answer questions number 2 and 3. We used the popular scheme in image steganography which is least significant bits for embedding in edges positions in color images. After we separate the color images into its components Red, Green, and Blue, then we used one of the components as an index to find the edges, while other one or two components used for embedding purpose. Using this technique we will guarantee the same number and positions of edges before and after embedding scheme, therefore we are guaranteed extracting the secrete message as it's without any loss of secrete messages bits.

Shafagh, Hossein, Burkhalter, Lukas, Hithnawi, Anwar, Duquennoy, Simon.  2017.  Towards Blockchain-based Auditable Storage and Sharing of IoT Data. Proceedings of the 2017 on Cloud Computing Security Workshop. :45–50.
Today the cloud plays a central role in storing, processing, and distributing data. Despite contributing to the rapid development of IoT applications, the current IoT cloud-centric architecture has led into a myriad of isolated data silos that hinders the full potential of holistic data-driven analytics within the IoT. In this paper, we present a blockchain-based design for the IoT that brings a distributed access control and data management. We depart from the current trust model that delegates access control of our data to a centralized trusted authority and instead empower the users with data ownership. Our design is tailored for IoT data streams and enables secure data sharing. We enable a secure and resilient access control management, by utilizing the blockchain as an auditable and distributed access control layer to the storage layer. We facilitate the storage of time-series IoT data at the edge of the network via a locality-aware decentralized storage system that is managed with the blockchain technology. Our system is agnostic of the physical storage nodes and supports as well utilization of cloud storage resources as storage nodes.