Visible to the public Biblio

Filters: Keyword is risk analysis  [Clear All Filters]
Jayabalan, Manoj.  2020.  Towards an Approach of Risk Analysis in Access Control. 2020 13th International Conference on Developments in eSystems Engineering (DeSE). :287–292.
Information security provides a set of mechanisms to be implemented in the organisation to protect the disclosure of data to the unauthorised person. Access control is the primary security component that allows the user to authorise the consumption of resources and data based on the predefined permissions. However, the access rules are static in nature, which does not adapt to the dynamic environment includes but not limited to healthcare, cloud computing, IoT, National Security and Intelligence Arena and multi-centric system. There is a need for an additional countermeasure in access decision that can adapt to those working conditions to assess the threats and to ensure privacy and security are maintained. Risk analysis is an act of measuring the threats to the system through various means such as, analysing the user behaviour, evaluating the user trust, and security policies. It is a modular component that can be integrated into the existing access control to predict the risk. This study presents the different techniques and approaches applied for risk analysis in access control. Based on the insights gained, this paper formulates the taxonomy of risk analysis and properties that will allow researchers to focus on areas that need to be improved and new features that could be beneficial to stakeholders.
Kinai, Andrew, Otieno, Fred, Bore, Nelson, Weldemariam, Komminist.  2020.  Multi-Factor Authentication for Users of Non-Internet Based Applications of Blockchain-Based Platforms. 2020 IEEE International Conference on Blockchain (Blockchain). :525–531.
Attacks targeting several millions of non-internet based application users are on the rise. These applications such as SMS and USSD typically do not benefit from existing multi-factor authentication methods due to the nature of their interaction interfaces and mode of operations. To address this problem, we propose an approach that augments blockchain with multi-factor authentication based on evidence from blockchain transactions combined with risk analysis. A profile of how a user performs transactions is built overtime and is used to analyse the risk level of each new transaction. If a transaction is flagged as high risk, we generate n-factor layers of authentication using past endorsed blockchain transactions. A demonstration of how we used the proposed approach to authenticate critical financial transactions in a blockchain-based asset financing platform is also discussed.
Plappert, Christian, Zelle, Daniel, Gadacz, Henry, Rieke, Roland, Scheuermann, Dirk, Krauß, Christoph.  2021.  Attack Surface Assessment for Cybersecurity Engineering in the Automotive Domain. 2021 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :266–275.
Connected smart cars enable new attacks that may have serious consequences. Thus, the development of new cars must follow a cybersecurity engineering process as defined for example in ISO/SAE 21434. A central part of such a process is the threat and risk assessment including an attack feasibility rating. In this paper, we present an attack surface assessment with focus on the attack feasibility rating compliant to ISO/SAE 21434. We introduce a reference architecture with assets constituting the attack surface, the attack feasibility rating for these assets, and the application of this rating on typical use cases. The attack feasibility rating assigns attacks and assets to an evaluation of the attacker dimensions such as the required knowledge and the feasibility of attacks derived from it. Our application of sample use cases shows how this rating can be used to assess the feasibility of an entire attack path. The attack feasibility rating can be used as a building block in a threat and risk assessment according to ISO/SAE 21434.
Spooner, D., Silowash, G., Costa, D., Albrethsen, M..  2018.  Navigating the Insider Threat Tool Landscape: Low Cost Technical Solutions to Jump Start an Insider Threat Program. 2018 IEEE Security and Privacy Workshops (SPW). :247—257.
This paper explores low cost technical solutions that can help organizations prevent, detect, and respond to insider incidents. Features and functionality associated with insider risk mitigation are presented. A taxonomy for high-level categories of insider threat tools is presented. A discussion of the relationship between the types of tools points out the nuances of insider threat control deployment, and considerations for selecting, implementing, and operating insider threat tools are provided.
Khorev, P. B., Zheltov, M. I..  2020.  Assessing Information Risks When Using Web Applications Using Fuzzy Logic. 2020 V International Conference on Information Technologies in Engineering Education ( Inforino ). :1—4.

The article looks at information risk concepts, how it is assessed, web application vulnerabilities and how to identify them. A prototype web application vulnerability scanner has been developed with a function of information risk assessment based on fuzzy logic. The software developed is used in laboratory sessions on data protection discipline.

Lee, Y., Woo, S., Song, Y., Lee, J., Lee, D. H..  2020.  Practical Vulnerability-Information-Sharing Architecture for Automotive Security-Risk Analysis. IEEE Access. 8:120009—120018.
Emerging trends that are shaping the future of the automotive industry include electrification, autonomous driving, sharing, and connectivity, and these trends keep changing annually. Thus, the automotive industry is shifting from mechanical devices to electronic control devices, and is not moving to Internet of Things devices connected to 5G networks. Owing to the convergence of automobile-information and communication technology (ICT), the safety and convenience features of automobiles have improved significantly. However, cyberattacks that occur in the existing ICT environment and can occur in the upcoming 5G network are being replicated in the automobile environment. In a hyper-connected society where 5G networks are commercially available, automotive security is extremely important, as vehicles become the center of vehicle to everything (V2X) communication connected to everything around them. Designing, developing, and deploying information security techniques for vehicles require a systematic security-risk-assessment and management process throughout the vehicle's lifecycle. To do this, a security risk analysis (SRA) must be performed, which requires an analysis of cyber threats on automotive vehicles. In this study, we introduce a cyber kill chain-based cyberattack analysis method to create a formal vulnerability-analysis system. We can also analyze car-hacking studies that were conducted on real cars to identify the characteristics of the attack stages of existing car-hacking techniques and propose the minimum but essential measures for defense. Finally, we propose an automotive common-vulnerabilities-and-exposure system to manage and share evolving vehicle-related cyberattacks, threats, and vulnerabilities.
Mace, J. C., Czekster, R. Melo, Morisset, C., Maple, C..  2020.  Smart Building Risk Assessment Case Study: Challenges, Deficiencies and Recommendations. 2020 16th European Dependable Computing Conference (EDCC). :59—64.
Inter-networked control systems make smart buildings increasingly efficient but can lead to severe operational disruptions and infrastructure damage. It is vital the security state of smart buildings is properly assessed so that thorough and cost effective risk management can be established. This paper uniquely reports on an actual risk assessment performed in 2018 on one of the world's most densely monitored, state-of-the-art, smart buildings. From our observations, we suggest that current practice may be inadequate due to a number of challenges and deficiencies, including the lack of a recognised smart building risk assessment methodology. As a result, the security posture of many smart buildings may not be as robust as their risk assessments suggest. Crucially, we highlight a number of key recommendations for a more comprehensive risk assessment process for smart buildings. As a whole, we believe this practical experience report will be of interest to a range of smart building stakeholders.
Bahaei, S. Sheikh.  2020.  A Framework for Risk Assessment in Augmented Reality-Equipped Socio-Technical Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :77—78.

New technologies, such as augmented reality (AR) are used to enhance human capabilities and extend human functioning; nevertheless they may cause distraction and incorrect human functioning. Systems including socio entities (such as human) and technical entities (such as augmented reality) are called socio-technical systems. In order to do risk assessment in such systems, considering new dependability threats caused by augmented reality is essential, for example failure of an extended human function is a new type of dependability threat introduced to the system because of new technologies. In particular, it is required to identify these new dependability threats and extend modeling and analyzing techniques to be able to uncover their potential impacts. This research aims at providing a framework for risk assessment in AR-equipped socio-technical systems by identifying AR-extended human failures and AR-caused faults leading to human failures. Our work also extends modeling elements in an existing metamodel for modeling socio-technical systems, to enable AR-relevant dependability threats modeling. This extended metamodel is expected to be used for extending analysis techniques to analyze AR-equipped socio-technical systems.

Malzahn, D., Birnbaum, Z., Wright-Hamor, C..  2020.  Automated Vulnerability Testing via Executable Attack Graphs. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–10.
Cyber risk assessments are an essential process for analyzing and prioritizing security issues. Unfortunately, many risk assessment methodologies are marred by human subjectivity, resulting in non-repeatable, inconsistent findings. The absence of repeatable and consistent results can lead to suboptimal decision making with respect to cyber risk reduction. There is a pressing need to reduce cyber risk assessment uncertainty by using tools that use well defined inputs, producing well defined results. This paper presents Automated Vulnerability and Risk Analysis (AVRA), an end-to-end process and tool for identifying and exploiting vulnerabilities, designed for use in cyber risk assessments. The approach presented is more comprehensive than traditional vulnerability scans due to its analysis of an entire network, integrating both host and network information. AVRA automatically generates a detailed model of the network and its individual components, which is used to create an attack graph. Then, AVRA follows individual attack paths, automatically launching exploits to reach a particular objective. AVRA was successfully tested within a virtual environment to demonstrate practicality and usability. The presented approach and resulting system enhances the cyber risk assessment process through rigor, repeatability, and objectivity.
Mohammadian, M..  2018.  Network Security Risk Assessment Using Intelligent Agents. 2018 International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR). :1–6.
Network security is an important issue in today's world with existence of network systems that communicate data and information about all aspects of our life, work and business. Network security is an important issue with connected networks and data communication between organisations of that specialized in different areas. Network security engineers spend a considerable amount of time to investigate network for security breaches and to enhance the security of their networks and data communications on their networks. They use Attack Graphs (AGs) which are graphical representation of networks to assist them in analysing large networks. With increase size of networks and their complexity, the use of attack graphs alone does not provide the necessary risk analysis and assessment facilities. There is a need for automated intelligent systems such as multiagent systems to assist in analysing, assessing and testing networks. Network systems changes with the increase in the size of organisation and connectivity of network of organisations based on the business needs or organisational or governmental rules and regulations. In this paper a multi-agent system is developed assist in analysing interconnected network to identify security risks. The multi-agent system is capable of security network analysis to identify paths using an attack graph of the network under consideration to protect network systems, as the networks grow and change, against possible attacks. The multiagent system uses a model developed by Mohammadian [3] for converting AGs to Fuzzy Cognitive Maps (FCMs) to identify attack paths from attack graphs and perform security risk analysis. In this paper a novel decision-making approach using FCMs is employed.
Liu, D., Lou, F., Wang, H..  2019.  Modeling and measurement internal threat process based on advanced stochastic model*. 2019 Chinese Automation Congress (CAC). :1077—1081.
Previous research on internal threats was mostly focused on modeling threat behaviors. These studies have paid little attention to risk measurement. This paper analyzed the internal threat scenarios, introduced the operation related protection model into the firewall-password model, constructed a series of sub models. By analyzing the illegal data out process, the analysis model of target network can be rapidly generated based on four protection sub-models. Then the risk value of an assessment point can be computed dynamically according to the Petri net computing characteristics and the effectiveness of overall network protection can be measured. This method improves the granularity of the model and simplifies the complexity of modeling complex networks and can realize dynamic and real-time risk measurement.
Qian, K., Parizi, R. M., Lo, D..  2018.  OWASP Risk Analysis Driven Security Requirements Specification for Secure Android Mobile Software Development. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines.
Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

Chamarthi, R., Reddy, A. P..  2018.  Empirical Methodology of Testing Using FMEA and Quality Metrics. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :85—90.

Testing which is an indispensable part of software engineering is itself an art and science which emerged as a discipline over a period. On testing, if defects are found, testers diminish the risk by providing the awareness of defects and solutions to deal with them before release. If testing does not find any defects, testing assure that under certain conditions the system functions correctly. To guarantee that enough testing has been done, major risk areas need to be tested. We have to identify the risks, analyse and control them. We need to categorize the risk items to decide the extent of testing to be covered. Also, Implementation of structured metrics is lagging in software testing. Efficient metrics are necessary to evaluate, manage the testing process and make testing a part of engineering discipline. This paper proposes the usage of risk based testing using FMEA technique and provides an ideal set of metrics which provides a way to ensure effective testing process.

André, Étienne, Lime, Didier, Ramparison, Mathias, Stoelinga, Mariëlle.  2019.  Parametric Analyses of Attack-Fault Trees. 2019 19th International Conference on Application of Concurrency to System Design (ACSD). :33—42.

Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.

Ding, Hongfa, Peng, Changgen, Tian, Youliang, Xiang, Shuwen.  2019.  A Game Theoretical Analysis of Risk Adaptive Access Control for Privacy Preserving. 2019 International Conference on Networking and Network Applications (NaNA). :253–258.

More and more security and privacy issues are arising as new technologies, such as big data and cloud computing, are widely applied in nowadays. For decreasing the privacy breaches in access control system under opening and cross-domain environment. In this paper, we suggest a game and risk based access model for privacy preserving by employing Shannon information and game theory. After defining the notions of Privacy Risk and Privacy Violation Access, a high-level framework of game theoretical risk based access control is proposed. Further, we present formulas for estimating the risk value of access request and user, construct and analyze the game model of the proposed access control by using a multi-stage two player game. There exists sub-game perfect Nash equilibrium each stage in the risk based access control and it's suitable to protect the privacy by limiting the privacy violation access requests.

Shukla, Ankur, Katt, Basel, Nweke, Livinus Obiora.  2019.  Vulnerability Discovery Modelling With Vulnerability Severity. 2019 IEEE Conference on Information and Communication Technology. :1—6.
Web browsers are primary targets of attacks because of their extensive uses and the fact that they interact with sensitive data. Vulnerabilities present in a web browser can pose serious risk to millions of users. Thus, it is pertinent to address these vulnerabilities to provide adequate protection for personally identifiable information. Research done in the past has showed that few vulnerability discovery models (VDMs) highlight the characterization of vulnerability discovery process. In these models, severity which is one of the most crucial properties has not been considered. Vulnerabilities can be categorized into different levels based on their severity. The discovery process of each kind of vulnerabilities is different from the other. Hence, it is essential to incorporate the severity of the vulnerabilities during the modelling of the vulnerability discovery process. This paper proposes a model to assess the vulnerabilities present in the software quantitatively with consideration for the severity of the vulnerabilities. It is possible to apply the proposed model to approximate the number of vulnerabilities along with vulnerability discovery rate, future occurrence of vulnerabilities, risk analysis, etc. Vulnerability data obtained from one of the major web browsers (Google Chrome) is deployed to examine goodness-of-fit and predictive capability of the proposed model. Experimental results justify the fact that the model proposed herein can estimate the required information better than the existing VDMs.
Yang, Shiman, Shi, Yijie, Guo, Fenzhuo.  2019.  Risk Assessment of Industrial Internet System By Using Game-Attack Graphs. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1660–1663.
In this paper, we propose a game-attack graph-based risk assessment model for industrial Internet system. Firstly, use non-destructive asset profiling to scan components and devices included in the system and their open services and communication protocols. Further compare the CNVD and CVE to find the vulnerability through the search engine keyword segment matching method, and generate an asset threat list. Secondly, build the attack rule base based on the network information, and model the system using the attribute attack graph. Thirdly, combine the game theory with the idea of the established model. Finally, optimize and quantify the analysis to get the best attack path and the best defense strategy.
Chen, Jun, Zhu, Huijun, Chen, Zhixin, Cai, Xiaobo, Yang, Linnan.  2019.  A Security Evaluation Model Based on Fuzzy Hierarchy Analysis for Industrial Cyber-Physical Control Systems. 2019 IEEE International Conference on Industrial Internet (ICII). :62—65.
With the increasing security threats to the information of Industrial Cyber-physical Control Systems, the quantitative assessment of security risk becomes an important basis of information security research. Based on fuzzy hierarchy analysis, this paper constructs the hierarchical model of industrial control system safety risk evaluation, and obtains the exact value of risk. Experimental results show that the proposed method can effectively quantify the control system risk, which provides a basis for industrial control system risk management decision.
Hasan, Kamrul, Shetty, Sachin, Hassanzadeh, Amin, Ullah, Sharif.  2019.  Towards Optimal Cyber Defense Remediation in Cyber Physical Systems by Balancing Operational Resilience and Strategic Risk. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.

A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.

Su, Chunmei, Li, Yonggang, Mao, Wen, Hu, Shangcheng.  2018.  Information Network Risk Assessment Based on AHP and Neural Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). :227—231.
This paper analyzes information network security risk assessment methods and models. Firstly an improved AHP method is proposed to assign the value of assets for solving the problem of risk judgment matrix consistency effectively. And then the neural network technology is proposed to construct the neural network model corresponding to the risk judgment matrix for evaluating the individual risk of assets objectively, the methods for calculating the asset risk value and system risk value are given. Finally some application results are given. Practice proves that the methods are correct and effective, which has been used in information network security risk assessment application and offers a good foundation for the implementation of the automatic assessment.
Wortman, Paul A., Tehranipoor, Fatemeh, Chandy, John A..  2018.  An Adversarial Risk-based Approach for Network Architecture Security Modeling and Design. 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Network architecture design and verification has become increasingly complicated as a greater number of security considerations, implementations, and factors are included in the design process. In the design process, one must account for various costs of interwoven layers of security. Generally these costs are simplified for evaluation of risk to the network. The obvious implications of adding security are the need to account for the impacts of loss (risk) and accounting for the ensuing increased design costs. The considerations that are not traditionally examined are those of the adversary and the defender of a given system. Without accounting for the view point of the individuals interacting with a network architecture, one can not verify and select the most advantageous security implementation. This work presents a method for obtaining a security metric that takes into account not only the risk of the defender, but also the probability of an attack originating from the motivation of the adversary. We then move to a more meaningful metric based on a monetary unit that architects can use in choosing a best fit solution for a given network critical path design problem.
Kikuchi, Masato, Okubo, Takao.  2019.  Power of Communication Behind Extreme Cybersecurity Incidents. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :315—319.

There are increasing threats for cyberspace. This paper tries to identify how extreme cybersecurity incidents occur based on the scenario of a targeted attack through emails. Knowledge on how extreme cybersecurity incidents occur helps in identifying the key points on how they can be prevented from occurring. The model based on system thinking approach to the understanding how communication influences entities and how tiny initiating events scale up into extreme events provides a condensed figure of the cyberspace and surrounding threats. By taking cyberspace layers and characteristics of cyberspace identified by this model into consideration, it predicts most suitable risk mitigations.

Jabeen, Gul, Ping, Luo.  2019.  A Unified Measurable Software Trustworthy Model Based on Vulnerability Loss Speed Index. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :18—25.

As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.

Sion, Laurens, Van Landuyt, Dimitri, Wuyts, Kim, Joosen, Wouter.  2019.  Privacy Risk Assessment for Data Subject-Aware Threat Modeling. 2019 IEEE Security and Privacy Workshops (SPW). :64–71.
Regulatory efforts such as the General Data Protection Regulation (GDPR) embody a notion of privacy risk that is centered around the fundamental rights of data subjects. This is, however, a fundamentally different notion of privacy risk than the one commonly used in threat modeling which is largely agnostic of involved data subjects. This mismatch hampers the applicability of privacy threat modeling approaches such as LINDDUN in a Data Protection by Design (DPbD) context. In this paper, we present a data subject-aware privacy risk assessment model in specific support of privacy threat modeling activities. This model allows the threat modeler to draw upon a more holistic understanding of privacy risk while assessing the relevance of specific privacy threats to the system under design. Additionally, we propose a number of improvements to privacy threat modeling, such as enriching Data Flow Diagram (DFD) system models with appropriate risk inputs (e.g., information on data types and involved data subjects). Incorporation of these risk inputs in DFDs, in combination with a risk estimation approach using Monte Carlo simulations, leads to a more comprehensive assessment of privacy risk. The proposed risk model has been integrated in threat modeling tool prototype and validated in the context of a realistic eHealth application.