Visible to the public Biblio

Filters: Keyword is ICT  [Clear All Filters]
2017-11-27
Pandey, R. K., Misra, M..  2016.  Cyber security threats \#x2014; Smart grid infrastructure. 2016 National Power Systems Conference (NPSC). :1–6.

Smart grid is an evolving new power system framework with ICT driven power equipment massively layered structure. The new generation sensors, smart meters and electronic devices are integral components of smart grid. However, the upcoming deployment of smart devices at different layers followed by their integration with communication networks may introduce cyber threats. The interdependencies of various subsystems functioning in the smart grid, if affected by cyber-attack, may be vulnerable and greatly reduce efficiency and reliability due to any one of the device not responding in real time frame. The cyber security vulnerabilities become even more evident due to the existing superannuated cyber infrastructure. This paper presents a critical review on expected cyber security threats in complex environment and addresses the grave concern of a secure cyber infrastructure and related developments. An extensive review on the cyber security objectives and requirements along with the risk evaluation process has been undertaken. The paper analyses confidentiality and privacy issues of entire components of smart power system. A critical evaluation on upcoming challenges with innovative research concerns is highlighted to achieve a roadmap of an immune smart grid infrastructure. This will further facilitate R&d; associated developments.

Parate, M., Tajane, S., Indi, B..  2016.  Assessment of System Vulnerability for Smart Grid Applications. 2016 IEEE International Conference on Engineering and Technology (ICETECH). :1083–1088.

The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.

2017-03-07
Masvosvere, D. J. E., Venter, H. S..  2015.  A model for the design of next generation e-supply chain digital forensic readiness tools. 2015 Information Security for South Africa (ISSA). :1–9.

The internet has had a major impact on how information is shared within supply chains, and in commerce in general. This has resulted in the establishment of information systems such as e-supply chains amongst others which integrate the internet and other information and communications technology (ICT) with traditional business processes for the swift transmission of information between trading partners. Many organisations have reaped the benefits of adopting the eSC model, but have also faced the challenges with which it comes. One such major challenge is information security. Digital forensic readiness is a relatively new exciting field which can prepare and prevent incidents from occurring within an eSC environment if implemented strategically. With the current state of cybercrime, tool developers are challenged with the task of developing cutting edge digital forensic readiness tools that can keep up with the current technological advancements, such as (eSCs), in the business world. Therefore, the problem addressed in this paper is that there are no DFR tools that are designed to support eSCs specifically. There are some general-purpose monitoring tools that have forensic readiness functionality, but currently there are no tools specifically designed to serve the eSC environment. Therefore, this paper discusses the limitations of current digital forensic readiness tools for the eSC environment and an architectural design for next-generation eSC DFR systems is proposed, along with the system requirements that such systems must satisfy. It is the view of the authors that the conclusions drawn from this paper can spearhead the development of cutting-edge next-generation digital forensic readiness tools, and bring attention to some of the shortcomings of current tools.

2015-04-30
Guizani, S..  2014.  Security applications challenges of RFID technology and possible countermeasures. Computing, Management and Telecommunications (ComManTel), 2014 International Conference on. :291-297.

Radio Frequency IDentification (RFID) is a technique for speedy and proficient identification system, it has been around for more than 50 years and was initially developed for improving warfare machinery. RFID technology bridges two technologies in the area of Information and Communication Technologies (ICT), namely Product Code (PC) technology and Wireless technology. This broad-based rapidly expanding technology impacts business, environment and society. The operating principle of an RFID system is as follows. The reader starts a communication process by radiating an electromagnetic wave. This wave will be intercepted by the antenna of the RFID tag, placed on the item to be identified. An induced current will be created at the tag and will activate the integrated circuit, enabling it to send back a wave to the reader. The reader redirects information to the host where it will be processed. RFID is used for wide range of applications in almost every field (Health, education, industry, security, management ...). In this review paper, we will focus on agricultural and environmental applications.