Visible to the public Biblio

Filters: Keyword is RFID  [Clear All Filters]
2021-07-08
Wahyudono, Bintang, Ogi, Dion.  2020.  Implementation of Two Factor Authentication based on RFID and Face Recognition using LBP Algorithm on Access Control System. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1—6.
Studies on two-factor authentication based on RFID and face recognition have been carried out on a large scale. However, these studies didn't discuss the way to overcome the weaknesses of face recognition authentication in the access control systems. In this study, two authentication factors, RFID and face recognition, were implemented using the LBP (Local Binary Pattern) algorithm to overcome weaknesses of face recognition authentication in the access control system. Based on the results of performance testing, the access control system has 100% RFID authentication and 80% face recognition authentication. The average time for the RFID authentication process is 0.03 seconds, the face recognition process is 6.3885 seconds and the verification of the face recognition is 0.1970 seconds. The access control system can still work properly after three days without being switched off. The results of security testing showed that the capabilities spoofing detection has 100% overcome the photo attack.
2021-05-20
Kamalraj, R., Madhan, E.S., Ghamya, K., Bhargavi, V..  2020.  Enhance Safety and Security System for Children in School Campus by using Wearable Sensors. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :986—990.
Child security in the school campus is most important in building a good society. In and around the world the children are abused and killed also in sometimes by the people those who are not in good attitude in the school campus. To track and resolve such issues an enhanced security feature system is required. Hence in this paper an enhanced version of security system for children is proposed by using `Wearable Sensors'. In this proposed method two wearable sensors nodes such as `Staff Node' and `Student Node' are paired by using `Bluetooth' communication technology and Smart Watch technology is also used to communicate the Security Center or Processing Node for tracking them about their location and whether the two nodes are moved away from the classroom. If the child node is not moving for a long period then it may be notified by the center and they will inform the security officers near to the place. This proposed method may satisfy the need of school management about the staff movements with students and the behavior of students to avoid unexpected issues.
2020-07-30
Holland, Martin, Stjepandić, Josip, Nigischer, Christopher.  2018.  Intellectual Property Protection of 3D Print Supply Chain with Blockchain Technology. 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). :1—8.
Within “Industrie 4.0” approach 3D printing technology is characterized as one of the disruptive innovations. Conventional supply chains are replaced by value-added networks. The spatially distributed development of printed components, e.g. for the rapid delivery of spare parts, creates a new challenge when differentiating between “original part”, “copy” or “counterfeit” becomes necessary. This is especially true for safety-critical products. Based on these changes classic branded products adopt the characteristics of licensing models as we know them in the areas of software and digital media. This paper describes the use of digital rights management as a key technology for the successful transition to Additive Manufacturing methods and a key for its commercial implementation and the prevention of intellectual property theft. Risks will be identified along the process chain and solution concepts are presented. These are currently being developed by an 8-partner project named SAMPL (Secure Additive Manufacturing Platform).
2020-05-26
Sahay, Rashmi, Geethakumari, G., Mitra, Barsha, Thejas, V..  2018.  Exponential Smoothing based Approach for Detection of Blackhole Attacks in IoT. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Low power and lossy network (LLN) comprising of constrained devices like sensors and RFIDs, is a major component in the Internet of Things (IoT) environment as these devices provide global connectivity to physical devices or “Things”. LLNs are tied to the Internet or any High Performance Computing environment via an adaptation layer called 6LoWPAN (IPv6 over Low power Personal Area Network). The routing protocol used by 6LoWPAN is RPL (IPv6 Routing Protocol over LLN). Like many other routing protocols, RPL is susceptible to blackhole attacks which cause topological isolation for a subset of nodes in the LLN. A malicious node instigating the blackhole attack drops received packets from nodes in its subtree which it is supposed to forward. Thus, the malicious node successfully isolates nodes in its subtree from the rest of the network. In this paper, we propose an algorithm based on the concept of exponential smoothing to detect the topological isolation of nodes due to blackhole attack. Exponential smoothing is a technique for smoothing time series data using the exponential window function and is used for short, medium and long term forecasting. In our proposed algorithm, exponential smoothing is used to estimate the next arrival time of packets at the sink node from every other node in the LLN. Using this estimation, the algorithm is designed to identify the malicious nodes instigating blackhole attack in real time.
2020-05-04
Liu, Shan, Yue, Keming, Zhang, Yu, Yang, Huq, Liu, Lu, Duan, Xiaorong.  2018.  The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.
2020-03-23
Kaul, Sonam Devgan, Hatzinakos, Dimitrios.  2019.  Learning Automata Based Secure Multi Agent RFID Authentication System. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Radio frequency identification wireless sensing technology widely adopted and developed from last decade and has been utilized for monitoring and autonomous identification of objects. However, wider utilization of RFID technologies has introduced challenges such as preserving security and privacy of sensitive data while maintaining the high quality of service. Thus, in this work, we will deliberately build up a RFID system by utilizing learning automata based multi agent intelligent system to greatly enhance and secure message transactions and to improve operational efficiency. The incorporation of these two advancements and technological developments will provide maximum benefit in terms of expertly and securely handle data in RFID scenario. In proposed work, learning automata inbuilt RFID tags or assumed players choose their optimal strategy via enlarging its own utility function to achieve long term benefit. This is possible if they transmit their utility securely to back end server and then correspondingly safely get new utility function from server to behave optimally in its environment. Hence, our proposed authentication protocol, expertly transfer utility from learning automata inbuilt tags to reader and then to server. Moreover, we verify the security and privacy of our proposed system by utilizing automatic formal prover Scyther tool.
Essam, Gehad, Shehata, Heba, Khattab, Tamer, Abualsaud, Khalid, Guizani, Mohsen.  2019.  Novel Hybrid Physical Layer Security Technique in RFID Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1299–1304.
In this paper, we propose a novel PHY layer security technique in radio frequency identification (RFID) backscatter communications system. In order to protect the RFID tag information confidentiality from the eavesdroppers attacks, the proposed technique deploys beam steering (BS) using a one dimensional (1-D) antenna array in the tag side in addition to noise injection from the reader side. The performance analysis and simulation results show that the new technique outperforms the already-existing noise injection security technique and overcomes its design limitations.
Bothe, Alexander, Bauer, Jan, Aschenbruck, Nils.  2019.  RFID-assisted Continuous User Authentication for IoT-based Smart Farming. 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA). :505–510.
Smart Farming is driven by the emergence of precise positioning systems and Internet of Things technologies which have already enabled site-specific applications, sustainable resource management, and interconnected machinery. Nowadays, so-called Farm Management Information Systems (FMISs) enable farm-internal interconnection of agricultural machines and implements and, thereby, allow in-field data exchange and the orchestration of collaborative agricultural processes. Machine data is often directly logged during task execution. Moreover, interconnection of farms, agricultural contractors, and marketplaces ease the collaboration. However, current FMISs lack in security and particularly in user authentication. In this paper, we present a security architecture for a decentralized, manufacturer-independent, and open-source FMIS. Special attention is turned on the Radio Frequency Identification (RFID)-based continuous user authentication which greatly improves security and credibility of automated documentation, while at the same time preserves usability in practice.
2020-02-10
Ramu, Gandu, Mishra, Zeesha, Acharya, B..  2019.  Hardware implementation of Piccolo Encryption Algorithm for constrained RFID application. 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON). :85–89.
The deployment of smart devices in IoT applications are increasing with tremendous pace causing severe security concerns, as it trade most of private information. To counter that security issues in low resource applications, lightweight cryptographic algorithms have been introduced in recent past. In this paper we propose efficient hardware architecture of piccolo lightweight algorithm uses 64 bits block size with variable key size of length 80 and 128 bits. This paper introduces novel hardware architecture of piccolo-80, to supports high speed RFID security applications. Different design strategies are there to optimize the hardware metrics trade-off for particular application. The algorithm is implemented on different family of FPGAs with different devices to analyze the performance of design in 4 input LUTs and 6 input LUTs implementations. In addition, the results of hardware design are evaluated and compared with the most relevant lightweight block ciphers, shows the proposed architecture finds its utilization in terms of speed and area optimization from the hardware resources. The increment in throughput with optimized area of this architecture suggests that piccolo can applicable to implement for ultra-lightweight applications also.
2019-10-02
Alkadi, A., Chi, H., Prodanoff, Z. G., Kreidl, P..  2018.  Evaluation of Two RFID Traffic Models with Potential in Anomaly Detection. SoutheastCon 2018. :1–5.

The use of Knuth's Rule and Bayesian Blocks constant piecewise models for characterization of RFID traffic has been proposed already. This study presents an evaluation of the application of those two modeling techniques for various RFID traffic patterns. The data sets used in this study consist of time series of binned RFID command counts. More specifically., we compare the shape of several empirical plots of raw data sets we obtained from experimental RIFD readings., against the constant piecewise graphs produced as an output of the two modeling algorithms. One issue limiting the applicability of modeling techniques to RFID traffic is the fact that there are a large number of various RFID applications available. We consider this phenomenon to present the main motivation for this study. The general expectation is that the RFID traffic traces from different applications would be sequences with different histogram shapes. Therefore., no modeling technique could be considered universal for modeling the traffic from multiple RFID applications., without first evaluating its model performance for various traffic patterns. We postulate that differences in traffic patterns are present if the histograms of two different sets of RFID traces form visually different plot shapes.

Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

Cherneva, V., Trahan, J..  2019.  A Secure and Efficient Parallel-Dependency RFID Grouping-Proof Protocol. 2019 IEEE International Conference on RFID (RFID). :1–8.

In this time of ubiquitous computing and the evolution of the Internet of Things (IoT), the deployment and development of Radio Frequency Identification (RFID) is becoming more extensive. Proving the simultaneous presence of a group of RFID tagged objects is a practical need in many application areas within the IoT domain. Security, privacy, and efficiency are central issues when designing such a grouping-proof protocol. This work is motivated by our serial-dependent and Sundaresan et al.'s grouping-proof protocols. In this paper, we propose a light, improved offline protocol: parallel-dependency grouping-proof protocol (PDGPP). The protocol focuses on security, privacy, and efficiency. PDGPP tackles the challenges of including robust privacy mechanisms and accommodates missing tags. It is scalable and complies with EPC C1G2.

Sharma, V., Vithalkar, A., Hashmi, M..  2018.  Lightweight Security Protocol for Chipless RFID in Internet of Things (IoT) Applications. 2018 10th International Conference on Communication Systems Networks (COMSNETS). :468–471.

The RFID based communication between objects within the framework of IoT is potentially very efficient in terms of power requirements and system complexity. The new design incorporating the emerging chipless RFID tags has the potential to make the system more efficient and simple. However, these systems are prone to privacy and security risks and these challenges associated with such systems have not been addressed appropriately in the broader IoT framework. In this context, a lightweight collision free algorithm based on n-bit pseudo random number generator, X-OR hash function, and rotations for chipless RFID system is presented. The algorithm has been implemented on an 8-bit open-loop resonator based chipless RFID tag based system and is validated using BASYS 2 FPGA board based platform. The proposed scheme has been shown to possess security against various attacks such as Denial of Service (DoS), tag/reader anonymity, and tag impersonation.

Sharma, V., Malhotra, S., Hashmi, M..  2018.  An Emerging Application Centric RFID Framework Based on New Web Technology. 2018 IEEE International Conference on RFID Technology Application (RFID-TA). :1–6.

In the context of emerging applications such as IoT, an RFID framework that can dynamically incorporate, identify, and seamlessly regulate the RFID tags is considered exciting. Earlier RFID frameworks developed using the older web technologies were limited in their ability to provide complete information about the RFID tags and their respective locations. However, the new and emerging web technologies have transformed this scenario and now framework can be developed to include all the required flexibility and security for seamless applications such as monitoring of RFID tags. This paper revisits and proposes a generic scenario of an RFID framework built using latest web technology and demonstrates its ability to customize using an application for tracking of personal user objects. This has been shown that the framework based on newer web technologies can be indeed robust, uniform, unified, and integrated.

Damghani, H., Hosseinian, H., Damghani, L..  2019.  Investigating Attacks to Improve Security and Privacy in RFID Systems Using the Security Bit Method. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). :833–838.

The RFID technology is now widely used and combined with everyday life. RFID Tag is a wireless device used to identify individuals and objects, in fact, it is a combination of the chip and antenna that sends the necessary information to an RFID Reader. On the other hand, an RFID Reader converts received radio waves into digital information and then provides facilities such as sending data to the computer and processing them. Radio frequency identification is a comprehensive processing technology that has led to a revolution in industry and medicine as an alternative to commercial barcodes. RFID Tag is used to tracking commodities and personal assets in the chain stores and even the human body and medical science. However, security and privacy problems have not yet been solved satisfactorily. There are many technical and economic challenges in this direction. In this paper, some of the latest technical research on privacy and security problems has been investigated in radio-frequency identification and security bit method, and it has been shown that in order to achieve this level of individual security, multiple technologies of RFID security development should combine with each other. These solutions should be cheap, efficient, reliable, flexible and long-term.

Santo, Walter E., de B. Salgueiro, Ricardo J. P., Santos, Reneilson, Souza, Danilo, Ribeiro, Admilson, Moreno, Edward.  2018.  Internet of Things: A Survey on Communication Protocol Security. Proceedings of the Euro American Conference on Telematics and Information Systems. :17:1–17:5.

This paper presents a survey on the main security problems that affect the communication protocols in the context of Internet of Things, in order to identify possible threats and vulnerabilities. The protocols RFID, NFC, 6LoWPAN, 6TiSCH, DTSL, CoAP and MQTT, for a better organization, were explored and categorized in layers according to the TCP / IP reference model. At the end, a summary is presented in tabular form with the security modes used for each protocol is used.

Huang, Shao-Cheng, Tsai, Chia-Wei, Hwang, Tzonelih.  2018.  Comment on "Cryptanalysis of a Novel Ultralightweight Mutual Authentication Protocol for IoT Devices Using RFID Tags". Proceedings of the 2018 International Conference on Data Science and Information Technology. :23–27.

To protect the security of IoT devices, Tewari and Gupta proposed an ultralightweight mutual-authentication protocol for an RFID system. In the protocol, only two simple bitwise operations (XOR and rotation) are used to achieve two-pass mutual authentication. Although the protocol is efficient, we observe that the protocol has a security vulnerability. This security weakness could cause the leaking of all secrets in RFID tags. Compared with other researches that also proposed attacks for Tewari and Gupta's protocol, our attack needs less time and smaller space complexity to implement. The time complexity of our attack is O(1), and the attack can successfully crack the protocol with 100% probability.

Wang, Ju, Abari, Omid, Keshav, Srinivasan.  2018.  Challenge: RFID Hacking for Fun and Profit. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :461–470.

Passive radio frequency identification (RFID) tags are ubiquitous today due to their low cost (a few cents), relatively long communication range (\$$\backslash$sim\$7-11\textasciitildem), ease of deployment, lack of battery, and small form factor. Hence, they are an attractive foundation for environmental sensing. Although RFID-based sensors have been studied in the research literature and are also available commercially, manufacturing them has been a technically-challenging task that is typically undertaken only by experienced researchers. In this paper, we show how even hobbyists can transform commodity RFID tags into sensors by physically altering (`hacking') them using COTS sensors, a pair of scissors, and clear adhesive tape. Importantly, this requires no change to commercial RFID readers. We also propose a new legacy-compatible tag reading protocol called Differential Minimum Response Threshold (DMRT) that is robust to the changes in an RF environment. To validate our vision, we develop RFID-based sensors for illuminance, temperature, touch, and gestures. We believe that our approach has the potential to open up the field of batteryless backscatter-based RFID sensing to the research community, making it an exciting area for future work.

2019-05-20
Wang, Ge, Qian, Chen, Cai, Haofan, Han, Jinsong, Zhao, Jizhong.  2018.  Replay-resilient Authentication for IoT. Proceedings of the 10th on Wireless of the Students, by the Students, and for the Students Workshop. :3–5.

We provide the first solution to an important question, "how a physical-layer RFID authentication method can defend against signal replay attacks". It was believed that if the attacker has a device that can replay the exact same reply signal of a legitimate tag, any physical-layer authentication method will fail. This paper presents Hu-Fu, the first physical layer RFID authentication protocol that is resilient to the major attacks including tag counterfeiting, signal replay, signal compensation, and brute-force feature reply. Hu-Fu is built on two fundamental ideas, namely inductive coupling of two tags and signal randomization. Hu-Fu does not require any hardware or protocol modification on COTS passive tags and can be implemented with COTS devices. We implement a prototype of Hu-Fu and demonstrate that it is accurate and robust to device diversity and environmental changes.

Chu, G., Lisitsa, A..  2018.  Penetration Testing for Internet of Things and Its Automation. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1479–1484.

The Internet of Things (IoT) is an emerging technology, an extension of the traditional Internet which make everything is connected each other based on Radio Frequency Identification (RFID), Sensor, GPS or Machine to Machine technologies, etc. The security issues surrounding IoT have been of detrimental impact to its development and has consequently attracted research interest. However, there are very few approaches which assess the security of IoT from the perspective of an attacker. Penetration testing is widely used to evaluate traditional internet or systems security to date and it normally spends numerous cost and time. In this paper, we analyze the security problems of IoT and propose a penetration testing approach and its automation based on belief-desire-intention (BDI) model to evaluate the security of the IoT.

2019-02-18
Hilt, Michael, Shao, Daniel, Yang, Baijian.  2018.  RFID Security, Verification, and Blockchain: Vulnerabilities Within the Supply Chain for Food Security. Proceedings of the 19th Annual SIG Conference on Information Technology Education. :145–145.

Over the past few decades, radio frequency identification (RFID) technology has been an important factor in securing products along the agri-food supply chain. However, there still exist security vulnerabilities when registering products to a specific RFID tag, particularly regarding the ease at which tags can be cloned. In this paper, a potential attack, labeled the "Hilt Shao attack", is identified which could occur during the initial phases of product registration, and demonstrate the type of attack using UID and CUID tags. Furthermore, a system is proposed using blockchain technology in order for the attacker to hide the cloned tag information. Results show that this attack, if carried out, can negate the profits of distributors along the supply chain, and negatively affect the consumer.

2018-08-23
Yang, Lei, Lin, Qiongzheng, Duan, Chunhui, An, Zhenlin.  2017.  Analog On-Tag Hashing: Towards Selective Reading As Hash Primitives in Gen2 RFID Systems. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. :301–314.
Deployment of billions of Commercial Off-The-Shelf (COTS) RFID tags has drawn much of the attention of the research community because of the performance gaps of current systems. In particular, hash-enabled protocol (HEP) is one of the most thoroughly studied topics in the past decade. HEPs are designed for a wide spectrum of notable applications (e.g., missing detection) without need to collect all tags. HEPs assume that each tag contains a hash function, such that a tag can select a random but predicable time slot to reply with a one-bit presence signal that shows its existence. However, the hash function has never been implemented in COTS tags in reality, which makes HEPs a 10-year untouchable mirage. This work designs and implements a group of analog on-tag hash primitives (called Tash) for COTS Gen2-compatible RFID systems, which moves prior HEPs forward from theory to practice. In particular, we design three types of hash primitives, namely, tash function, tash table function and tash operator. All of these hash primitives are implemented through selective reading, which is a fundamental and mandatory functionality specified in Gen2 protocol, without any hardware modification and fabrication. We further apply our hash primitives in two typical HEP applications (i.e., cardinality estimation and missing detection) to show the feasibility and effectiveness of Tash. Results from our prototype, which is composed of one ImpinJ reader and 3,000 Alien tags, demonstrate that the new design lowers 60% of the communication overhead in the air. The tash operator can additionally introduce an overhead drop of 29.7%.
2018-05-16
Saarinen, Markku-Juhani Olavi.  2017.  Ring-LWE Ciphertext Compression and Error Correction: Tools for Lightweight Post-Quantum Cryptography. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :15–22.

Some lattice-based public key cryptosystems allow one to transform ciphertext from one lattice or ring representation to another efficiently and without knowledge of public and private keys. In this work we explore this lattice transformation property from cryptographic engineering viewpoint. We apply ciphertext transformation to compress Ring-LWE ciphertexts and to enable efficient decryption on an ultra-lightweight implementation targets such as Internet of Things, Smart Cards, and RFID applications. Significantly, this can be done without modifying the original encryption procedure or its security parameters. Such flexibility is unique to lattice-based cryptography and may find additional, unique real-life applications. Ciphertext compression can significantly increase the probability of decryption errors. We show that the frequency of such errors can be analyzed, measured and used to derive precise failure bounds for n-bit error correction. We introduce XECC, a fast multi-error correcting code that allows constant time implementation in software. We use these tools to construct and explore TRUNC8, a concrete Ring-LWE encryption and authentication system. We analyze its implementation, security, and performance. We show that our lattice compression technique reduces ciphertext size by more than 40% at equivalent security level, while also enabling public key cryptography on previously unreachable ultra-lightweight platforms. The experimental public key encryption and authentication system has been implemented on an 8-bit AVR target, where it easily outperforms elliptic curve and RSA-based proposals at similar security level. Similar results have been obtained with a Cortex M0 implementation. The new decryption code requires only a fraction of the software footprint of previous Ring-LWE implementations with the same encryption parameters, and is well suited for hardware implementation.

Kösemen, Cem, Dalkiliç, Gökhan.  2017.  Designing a Random Number Generator for Secure Communication with WISP. Proceedings of the International Conference on Compute and Data Analysis. :289–292.

This research aims to design a hardware random number generator running on wireless identification and sensing platform (WISP), which is a lightweight Internet of things device. The accelerometer sensor on WISP is used as the entropy source. This entropy source is post-processed with de-biasing and extraction methods to provide more uniformly distributed results that can be used in the authentication protocols between a radio frequency identification (RFID) tag and an RFID reader. The obtained random number outputs are tested using the well-known NIST random number test suite. It is seen that the numbers pass all the tests in the NIST randomness test suite.

Chen, Tao, Li, Linsen, Wang, Shiqi, Chen, Gaosheng, Wang, Zeming.  2017.  Improved Group Management Protocol of RFID Password Method. Proceedings of the Second International Conference on Internet of Things and Cloud Computing. :42:1–42:4.

The Radio Frequency Identification (RFID), as one of the key technologies in sensing layer of the Internet of Things (IoT) framework, has increasingly been deployed in a wide variety of application domains. But the reliability of RFID is still a great concern. This article introduces the group management of RFID passwords method, come up with by YUICHI KOBAYASHI and other researchers, which aimed to reduce the risk of privacy disclosure. But for reason that the password and pass key in the method, which are set to protect the ID, doesn't change and the ID is transmitted directly in the unsafe channel, it causes serious vulnerabilities that may be used by resourceful adversary. Thus, we proposed an improved method by using the random number to encrypt the password and switching the password into the temporally valid information. Besides, the protocol encrypts the ID during to avoid the direct transmission situation significantly increases the reliability.