Visible to the public Biblio

Filters: Keyword is Asia  [Clear All Filters]
Yoshino, M., Naganuma, K., Kunihiro, N., Sato, H..  2020.  Practical Query-based Order Revealing Encryption from Symmetric Searchable Encryption. 2020 15th Asia Joint Conference on Information Security (AsiaJCIS). :16–23.
In the 2010s, there has been significant interest in developing methods, such as searchable encryption for exact matching and order-preserving/-revealing encryption for range search, to perform search on encrypted data. However, the symmetric searchable encryption method has been steadily used not only in databases but also in full-text search engine because of its quick performance and high security against intruders and system administrators. Contrarily, order-preserving/-revealing encryption is rarely employed in practice: almost all related schemes suffer from inference attacks, and some schemes are secure but impractical because they require exponential storage size or communication complexity. In this study, we define the new security models based on order-revealing encryption (ORE) for performing range search, and explain that previous techniques are not satisfied with our weak security model. We present two generic constructions of ORE using the searchable encryption method. Our constructions offer practical performance such as the storage size of O(nb) and computation complexity of O(n2), where the plaintext space is a set of n-bit binaries and b denotes the block size of the ciphertext generated via searchable encryption. The first construction gives the comparison result to the server, and the security considers a weak security model. The second construction hides the comparison result from the server, and only the secret-key owner can recover it.
Ding, K., Meng, Z., Yu, Z., Ju, Z., Zhao, Z., Xu, K..  2020.  Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
Ma, C., Wang, L., Gai, C., Yang, D., Zhang, P., Zhang, H., Li, C..  2020.  Frequency Security Assessment for Receiving-end System Based on Deep Learning Method. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :831–836.
For hours-ahead assessment of power systems with a high penetration level of renewable generation, a large number of uncertain scenarios should be checked to ensure the frequency security of the system after the severe power disturbance following HVDC blocking. In this situation, the full time-domain simulation is unsuitable as a result of the heavy calculation burden. To fulfill the quick assessment of the frequency security, the online frequency security assessment framework based on deep learning is proposed in this paper. The Deep Belief Network (DBN) method is used to establish the framework. The sample generation method is researched to generate representative samples for the purposed of higher assessment accuracy. A large-scale AC-DC interconnected power grid is adopted to verify the validity of the proposed assessment method.
Liao, Y., Zhou, J., Yang, Y., Ruan, O..  2018.  An Efficient Oblivious Transfer Protocol with Access Control. 2018 13th Asia Joint Conference on Information Security (AsiaJCIS). :29–34.

Due to the rapid development of internet in our daily life, protecting privacy has become a focus of attention. To create privacy-preserving database and prevent illegal user access the database, oblivious transfer with access control (OTAC) was proposed, which is a cryptographic primitive that extends from oblivious transfer (OT). It allows a user to anonymously query a database where each message is protected by an access control policy and only if the user' s attribute satisfy that access control policy can obtain it. In this paper, we propose a new protocol for OTAC by using elliptic curve cryptography, which is more efficient compared to the existing similar protocols. In our scheme, we also preserves user's anonymity and ensures that the user's attribute is not disclosed to the sender. Additionally, our construction guarantees the user to verify the correctness of messages recovered at the end of each transfer phase.

Moghadas, S. H., Fischer, G..  2017.  Robust IoT communication physical layer concept with improved physical unclonable function. 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). :97–100.

Reliability and robustness of Internet of Things (IoT)-cloud-based communication is an important issue for prospective development of the IoT concept. In this regard, a robust and unique client-to-cloud communication physical layer is required. Physical Unclonable Function (PUF) is regarded as a suitable physics-based random identification hardware, but suffers from reliability problems. In this paper, we propose novel hardware concepts and furthermore an analysis method in CMOS technology to improve the hardware-based robustness of the generated PUF word from its first point of generation to the last cloud-interfacing point in a client. Moreover, we present a spectral analysis for an inexpensive high-yield implementation in a 65nm generation. We also offer robust monitoring concepts for the PUF-interfacing communication physical layer hardware.