Visible to the public Biblio

Filters: Keyword is location-based services  [Clear All Filters]
2020-04-20
Xiang, Wei.  2019.  An Efficient Location Privacy Preserving Model based on Geohash. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1–5.
With the rapid development of location-aware mobile devices, location-based services have been widely used. When LBS (Location Based Services) bringing great convenience and profits, it also brings great hidden trouble, among which user privacy security is one of them. The paper builds a LBS privacy protection model and develops algorithm depend on the technology of one dimensional coding of Geohash geographic information. The results of experiments and data measurements show that the model the model has reached k-anonymity effect and has good performance in avoiding attacking from the leaked information in a continuous query with the user's background knowledge. It also has a preferable performance in time cost of system process.
2020-02-18
Zhang, Detian, Liu, An, Jin, Gaoming, Li, Qing.  2019.  Edge-Based Shortest Path Caching for Location-Based Services. 2019 IEEE International Conference on Web Services (ICWS). :320–327.

Shortest path queries on road networks are widely used in location-based services (LBS), e.g., finding the shortest route from my home to the airport through Google Maps. However, when there are a large number of path queries arrived concurrently or in a short while, an LBS provider (e.g., Google Maps) has to endure a high workload and then may lead to a long response time to users. Therefore, path caching services are utilized to accelerate large-scale path query processing, which try to store the historical path results and reuse them to answer the coming queries directly. However, most of existing path caches are organized based on nodes of paths; hence, the underlying road network topology is still needed to answer a path query when its querying origin or destination lies on edges. To overcome this limitation, we propose an edge-based shortest path cache in this paper that can efficiently handle queries without needing any road information, which is much more practical in the real world. We achieve this by designing a totally new edge-based path cache structure, an efficient R-tree-based cache lookup algorithm, and a greedy-based cache construction algorithm. Extensive experiments on a real road network and real point-of-interest datasets are conducted, and the results show the efficiency, scalability, and applicability of our proposed caching techniques.

2020-01-20
Jasim, Anwar Chitheer, Hassoon, Imad Ali, Tapus, Nicolae.  2019.  Cloud: privacy For Locations Based-services' through Access Control with dynamic multi-level policy. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1911–1916.
LBSs are Location-Based Services that provide certain service based on the current or past user's location. During the past decade, LBSs have become more popular as a result of the widespread use of mobile devices with position functions. Location information is a secondary information that can provide personal insight about one's life. This issue associated with sharing of data in cloud-based locations. For example, a hospital is a public space and the actual location of the hospital does not carry any sensitive information. However, it may become sensitive if the specialty of the hospital is analyzed. In this paper we proposed design presents a combination of methods for providing data privacy protection for location-based services (LBSs) with the use of cloud service. The work built in zero trust and we start to manage the access to the system through different levels. The proposal is based on a model that stores user location data in supplementary servers and not in non-trustable third-party applications. The approach of the present research is to analyze the privacy protection possibilities through data partitioning. The data collected from the different recourses are distributed into different servers according to the partitioning model based on multi-level policy. Access is granted to third party applications only to designated servers and the privacy of the user profile is also ensured in each server, as they are not trustable.
2018-11-28
Agadakos, Ioannis, Polakis, Jason, Portokalidis, Georgios.  2017.  Techu: Open and Privacy-Preserving Crowdsourced GPS for the Masses. Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. :475–487.

The proliferation of mobile devices, equipped with numerous sensors and Internet connectivity, has laid the foundation for the emergence of a diverse set of crowdsourcing services. By leveraging the multitude, geographical dispersion, and technical abilities of smartphones, these services tackle challenging tasks by harnessing the power of the crowd. One such service, Crowd GPS, has gained traction in the industry and research community alike, materializing as a class of systems that track lost objects or individuals (e.g., children or elders). While these systems can have significant impact, they suffer from major privacy threats. In this paper, we highlight the inherent risks to users from the centralized designs adopted by such services and demonstrate how adversaries can trivially misuse one of the most popular crowd GPS services to track their users. As an alternative, we present Techu, a privacy-preserving crowd GPS service for tracking Bluetooth tags. Our architecture follows a hybrid decentralized approach, where an untrusted server acts as a bulletin board that collects reports of tags observed by the crowd, while observers store the location information locally and only disclose it upon proof of ownership of the tag. Techu does not require user authentication, allowing users to remain anonymous. As no user authentication is required and cloud messaging queues are leveraged for communication between users, users remain anonymous. Our security analysis highlights the privacy offered by Techu, and details how our design prevents adversaries from tracking or identifying users. Finally, our experimental evaluation demonstrates that Techu has negligible impact on power consumption, and achieves superior effectiveness to previously proposed systems while offering stronger privacy guarantees.

2018-09-05
Takbiri, N., Houmansadr, A., Goeckel, D. L., Pishro-Nik, H..  2017.  Limits of location privacy under anonymization and obfuscation. 2017 IEEE International Symposium on Information Theory (ISIT). :764–768.

The prevalence of mobile devices and location-based services (LBS) has generated great concerns regarding the LBS users' privacy, which can be compromised by statistical analysis of their movement patterns. A number of algorithms have been proposed to protect the privacy of users in such systems, but the fundamental underpinnings of such remain unexplored. Recently, the concept of perfect location privacy was introduced and its achievability was studied for anonymization-based LBS systems, where user identifiers are permuted at regular intervals to prevent identification based on statistical analysis of long time sequences. In this paper, we significantly extend that investigation by incorporating the other major tool commonly employed to obtain location privacy: obfuscation, where user locations are purposely obscured to protect their privacy. Since anonymization and obfuscation reduce user utility in LBS systems, we investigate how location privacy varies with the degree to which each of these two methods is employed. We provide: (1) achievability results for the case where the location of each user is governed by an i.i.d. process; (2) converse results for the i.i.d. case as well as the more general Markov Chain model. We show that, as the number of users in the network grows, the obfuscation-anonymization plane can be divided into two regions: in the first region, all users have perfect location privacy; and, in the second region, no user has location privacy.

2017-12-12
Hasan, H., Salah, T., Shehada, D., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., Al-Hammadi, Y..  2017.  Secure lightweight ECC-based protocol for multi-agent IoT systems. 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The rapid increase of connected devices and the major advances in information and communication technologies have led to great emergence in the Internet of Things (IoT). IoT devices require software adaptation as they are in continuous transition. Multi-agent based solutions offer adaptable composition for IoT systems. Mobile agents can also be used to enable interoperability and global intelligence with smart objects in the Internet of Things. The use of agents carrying personal data and the rapid increasing number of connected IoT devices require the use of security protocols to secure the user data. Elliptic Curve Cryptography (ECC) Algorithm has emerged as an attractive and efficient public-key cryptosystem. We recommend the use of ECC in the proposed Broadcast based Secure Mobile Agent Protocol (BROSMAP) which is one of the most secure protocols that provides confidentiality, authentication, authorization, accountability, integrity and non-repudiation. We provide a methodology to improve BROSMAP to fulfill the needs of Multi-agent based IoT Systems in general. The new BROSMAP performs better than its predecessor and provides the same security requirements. We have formally verified ECC-BROSMAP using Scyther and compared it with BROSMAP in terms of execution time and computational cost. The effect of varying the key size on BROSMAP is also presented. A new ECC-based BROSMAP takes half the time of Rivest-Shamir-Adleman (RSA) 2048 BROSMAP and 4 times better than its equivalent RSA 3072 version. The computational cost was found in favor of ECC-BROSMAP which is more efficient by a factor of 561 as compared to the RSA-BROSMAP.

2017-08-22
Aditya, Paarijaat, Sen, Rijurekha, Druschel, Peter, Joon Oh, Seong, Benenson, Rodrigo, Fritz, Mario, Schiele, Bernt, Bhattacharjee, Bobby, Wu, Tong Tong.  2016.  I-Pic: A Platform for Privacy-Compliant Image Capture. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. :235–248.

The ubiquity of portable mobile devices equipped with built-in cameras have led to a transformation in how and when digital images are captured, shared, and archived. Photographs and videos from social gatherings, public events, and even crime scenes are commonplace online. While the spontaneity afforded by these devices have led to new personal and creative outlets, privacy concerns of bystanders (and indeed, in some cases, unwilling subjects) have remained largely unaddressed. We present I-Pic, a trusted software platform that integrates digital capture with user-defined privacy. In I-Pic, users choose alevel of privacy (e.g., image capture allowed or not) based upon social context (e.g., out in public vs. with friends vs. at workplace). Privacy choices of nearby users are advertised via short-range radio, and I-Pic-compliant capture platforms generate edited media to conform to privacy choices of image subjects. I-Pic uses secure multiparty computation to ensure that users' visual features and privacy choices are not revealed publicly, regardless of whether they are the subjects of an image capture. Just as importantly, I-Pic preserves the ease-of-use and spontaneous nature of capture and sharing between trusted users. Our evaluation of I-Pic shows that a practical, energy-efficient system that conforms to the privacy choices of many users within a scene can be built and deployed using current hardware.

2017-02-23
S. Patil, S. Ramayane, M. Jadhav, P. Pachorkar.  2015.  "Hiding User Privacy in Location Base Services through Mobile Collaboration". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1105-1107.

User uses smartphones for web surfing and browsing data. Many smartphones are embedded with inbuilt location aware system called GPS [Global Positioning System]. Using GPS user have to register and share his all private information to the LBS server. LBS is nothing but Location Based Service. Simply user sends the query to the LBS server. Then what is happening the LBS server gives a private information regarding particular user location. There will be a possibility to misuse this information so using mobile crowd method hides user location from LBS server and avoid sharing of privacy information with server. Our solution does not required to change the LBS server architecture.

2015-05-04
Jagdale, B.N., Bakal, J.W..  2014.  Synergetic cloaking technique in wireless network for location privacy. Industrial and Information Systems (ICIIS), 2014 9th International Conference on. :1-6.

Mobile users access location services from a location based server. While doing so, the user's privacy is at risk. The server has access to all details about the user. Example the recently visited places, the type of information he accesses. We have presented synergetic technique to safeguard location privacy of users accessing location-based services via mobile devices. Mobile devices have a capability to form ad-hoc networks to hide a user's identity and position. The user who requires the service is the query originator and who requests the service on behalf of query originator is the query sender. The query originator selects the query sender with equal probability which leads to anonymity in the network. The location revealed to the location service provider is a rectangle instead of exact co-ordinate. In this paper we have simulated the mobile network and shown the results for cloaking area sizes and performance against the variation in the density of users.

2015-04-30
Yinan Jing, Ling Hu, Wei-Shinn Ku, Shahabi, C..  2014.  Authentication of k Nearest Neighbor Query on Road Networks. Knowledge and Data Engineering, IEEE Transactions on. 26:1494-1506.

Outsourcing spatial databases to the cloud provides an economical and flexible way for data owners to deliver spatial data to users of location-based services. However, in the database outsourcing paradigm, the third-party service provider is not always trustworthy, therefore, ensuring spatial query integrity is critical. In this paper, we propose an efficient road network k-nearest-neighbor query verification technique which utilizes the network Voronoi diagram and neighbors to prove the integrity of query results. Unlike previous work that verifies k-nearest-neighbor results in the Euclidean space, our approach needs to verify both the distances and the shortest paths from the query point to its kNN results on the road network. We evaluate our approach on real-world road networks together with both real and synthetic points of interest datasets. Our experiments run on Google Android mobile devices which communicate with the service provider through wireless connections. The experiment results show that our approach leads to compact verification objects (VO) and the verification algorithm on mobile devices is efficient, especially for queries with low selectivity.