Visible to the public Biblio

Filters: Keyword is carrier density  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Huang, Hsiang-Hung, Toprasertpong, Kasidit, Delamarre, Amaury, Watanabe, Kentaroh, Sugiyama, Masakazu, Nakano, Yoshiaki.  2019.  Numerical Demonstration of Trade-off between Carrier Confinement Effect and Carrier Transport for Multiple-Quantum-Well Based High-Efficiency InGaP Solar Cells. 2019 Compound Semiconductor Week (CSW). :1-2.

To promote InGaP solar cell efficiency toward the theoretical limit, one promising approach is to incorporate multiple quantum wells (MQWs) into the InGaP host and improve its open-circuit voltage by facilitating radiative carrier recombination owing to carrier confinement. In this research, we demonstrate numerically that a strain-balanced (SB) In1-xGaxP/In1-yGayP MQW enhances confined carrier density while degrades the effective carrier mobility. However, a smart design of the MQW structure is possible by considering quantitatively the trade-off between carrier confinement effect and carrier transport, and MQW can be advantageous over the InGaP bulk material for boosting photovoltaic efficiency.

Keeler, G. A., Campione, S., Wood, M. G., Serkland, D. K., Parameswaran, S., Ihlefeld, J., Luk, T. S., Wendt, J. R., Geib, K. M..  2017.  Reducing optical confinement losses for fast, efficient nanophotonic modulators. 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM). :201–202.

We demonstrate high-speed operation of ultracompact electroabsorption modulators based on epsilon-near-zero confinement in indium oxide (In$_\textrm2$$_\textrm3$\$) on silicon using field-effect carrier density tuning. Additionally, we discuss strategies to enhance modulator performance and reduce confinement-related losses by introducing high-mobility conducting oxides such as cadmium oxide (CdO).