Visible to the public Biblio

Filters: Keyword is carrier density  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
N
Huang, Hsiang-Hung, Toprasertpong, Kasidit, Delamarre, Amaury, Watanabe, Kentaroh, Sugiyama, Masakazu, Nakano, Yoshiaki.  2019.  Numerical Demonstration of Trade-off between Carrier Confinement Effect and Carrier Transport for Multiple-Quantum-Well Based High-Efficiency InGaP Solar Cells. 2019 Compound Semiconductor Week (CSW). :1-2.

To promote InGaP solar cell efficiency toward the theoretical limit, one promising approach is to incorporate multiple quantum wells (MQWs) into the InGaP host and improve its open-circuit voltage by facilitating radiative carrier recombination owing to carrier confinement. In this research, we demonstrate numerically that a strain-balanced (SB) In1-xGaxP/In1-yGayP MQW enhances confined carrier density while degrades the effective carrier mobility. However, a smart design of the MQW structure is possible by considering quantitatively the trade-off between carrier confinement effect and carrier transport, and MQW can be advantageous over the InGaP bulk material for boosting photovoltaic efficiency.

R
Keeler, G. A., Campione, S., Wood, M. G., Serkland, D. K., Parameswaran, S., Ihlefeld, J., Luk, T. S., Wendt, J. R., Geib, K. M..  2017.  Reducing optical confinement losses for fast, efficient nanophotonic modulators. 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM). :201–202.

We demonstrate high-speed operation of ultracompact electroabsorption modulators based on epsilon-near-zero confinement in indium oxide (In$_\textrm2$$_\textrm3$\$) on silicon using field-effect carrier density tuning. Additionally, we discuss strategies to enhance modulator performance and reduce confinement-related losses by introducing high-mobility conducting oxides such as cadmium oxide (CdO).