Visible to the public Biblio

Filters: Keyword is performance degradation  [Clear All Filters]
Kirsch, J., Goose, S., Amir, Y., Dong Wei, Skare, P..  2014.  Survivable SCADA Via Intrusion-Tolerant Replication. Smart Grid, IEEE Transactions on. 5:60-70.

Providers of critical infrastructure services strive to maintain the high availability of their SCADA systems. This paper reports on our experience designing, architecting, and evaluating the first survivable SCADA system-one that is able to ensure correct behavior with minimal performance degradation even during cyber attacks that compromise part of the system. We describe the challenges we faced when integrating modern intrusion-tolerant protocols with a conventional SCADA architecture and present the techniques we developed to overcome these challenges. The results illustrate that our survivable SCADA system not only functions correctly in the face of a cyber attack, but that it also processes in excess of 20 000 messages per second with a latency of less than 30 ms, making it suitable for even large-scale deployments managing thousands of remote terminal units.

Skoberne, N., Maennel, O., Phillips, I., Bush, R., Zorz, J., Ciglaric, M..  2014.  IPv4 Address Sharing Mechanism Classification and Tradeoff Analysis. Networking, IEEE/ACM Transactions on. 22:391-404.

The growth of the Internet has made IPv4 addresses a scarce resource. Due to slow IPv6 deployment, IANA-level IPv4 address exhaustion was reached before the world could transition to an IPv6-only Internet. The continuing need for IPv4 reachability will only be supported by IPv4 address sharing. This paper reviews ISP-level address sharing mechanisms, which allow Internet service providers to connect multiple customers who share a single IPv4 address. Some mechanisms come with severe and unpredicted consequences, and all of them come with tradeoffs. We propose a novel classification, which we apply to existing mechanisms such as NAT444 and DS-Lite and proposals such as 4rd, MAP, etc. Our tradeoff analysis reveals insights into many problems including: abuse attribution, performance degradation, address and port usage efficiency, direct intercustomer communication, and availability.

Wang, Jian, Guo, Shize, Chen, Zhe, Zhang, Tao.  2019.  A Benchmark Suite of Hardware Trojans for On-Chip Networks. IEEE Access. 7:102002—102009.
As recently studied, network-on-chip (NoC) suffers growing threats from hardware trojans (HTs), leading to performance degradation or information leakage when it provides communication service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid development in recent years. However, to the best of our knowledge, there are few standard benchmarks developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner. Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive experiments, including functional testing and side channel analysis are performed to assess the stealthiness of our HTs.
Chen, Shuo-Han, Yang, Ming-Chang, Chang, Yuan-Hao, Wu, Chun-Feng.  2019.  Enabling File-Oriented Fast Secure Deletion on Shingled Magnetic Recording Drives. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Existing secure deletion approaches are inefficient in erasing data permanently because file systems have no knowledge of the data layout on the storage device, nor is the storage device aware of file information within the file systems. This inefficiency is exaggerated on the emerging shingled magnetic recording (SMR) drive due to its inherent sequential-write constraint. On SMR drives, secure deletion requests may lead to serious write amplification and performance degradation if the data layout is not properly configured. Such observation motivates us to propose a file-oriented fast secure deletion (FFSD) strategy to alleviate the negative impacts of SMR drives' sequential-write constraint and improve the efficiency of secure deletion operations on SMR drives. A series of experiments was conducted to demonstrate the capability of the proposed strategy on improving the efficiency of secure deletion on SMR drives.

Jeong, S., Kang, S., Yang, J.-S..  2020.  PAIR: Pin-aligned In-DRAM ECC architecture using expandability of Reed-Solomon code. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1–6.
The computation speed of computer systems is getting faster and the memory has been enhanced in performance and density through process scaling. However, due to the process scaling, DRAMs are recently suffering from numerous inherent faults. DRAM vendors suggest In-DRAM Error Correcting Code (IECC) to cope with the unreliable operation. However, the conventional IECC schemes have concerns about miscorrection and performance degradation. This paper proposes a pin-aligned In-DRAM ECC architecture using the expandability of a Reed-Solomon code (PAIR), that aligns ECC codewords with DQ pin lines (data passage of DRAM). PAIR is specialized in managing widely distributed inherent faults without the performance degradation, and its correction capability is sufficient to correct burst errors as well. The experimental results analyzed with the latest DRAM model show that the proposed architecture achieves up to 106 times higher reliability than XED with 14% performance improvement, and 10 times higher reliability than DUO with a similar performance, on average.