Visible to the public Biblio

Found 2125 results

Filters: Keyword is resilience  [Clear All Filters]
2020-01-21
Tran-Jørgensen, Peter W. V., Kulik, Tomas, Boudjadar, Jalil, Larsen, Peter Gorm.  2019.  Security Analysis of Cloud-Connected Industrial Control Systems Using Combinatorial Testing. Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design. :1–11.

Industrial control systems are moving from monolithic to distributed and cloud-connected architectures, which increases system complexity and vulnerability, thus complicates security analysis. When exhaustive verification accounts for this complexity the state space being sought grows drastically as the system model evolves and more details are considered. Eventually this may lead to state space explosion, which makes exhaustive verification infeasible. To address this, we use VDM-SL's combinatorial testing feature to generate security attacks that are executed against the model to verify whether the system has the desired security properties. We demonstrate our approach using a cloud-connected industrial control system that is responsible for performing safety-critical tasks and handling client requests sent to the control network. Although the approach is not exhaustive it enables verification of mitigation strategies for a large number of attacks and complex systems within reasonable time.

Hou, Ye, Such, Jose, Rashid, Awais.  2019.  Understanding Security Requirements for Industrial Control System Supply Chains. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :50–53.

We address the need for security requirements to take into account risks arising from complex supply chains underpinning cyber-physical infrastructures such as industrial control systems (ICS). We present SEISMiC (SEcurity Industrial control SysteM supply Chains), a framework that takes into account the whole spectrum of security risks - from technical aspects through to human and organizational issues - across an ICS supply chain. We demonstrate the effectiveness of SEISMiC through a supply chain risk assessment of Natanz, Iran's nuclear facility that was the subject of the Stuxnet attack.

Fujdiak, Radek, Blazek, Petr, Mlynek, Petr, Misurec, Jiri.  2019.  Developing Battery of Vulnerability Tests for Industrial Control Systems. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

Nowadays, the industrial control systems (ICS) face many challenges, where security is becoming one of the most crucial. This fact is caused by new connected environment, which brings among new possibilities also new vulnerabilities, threats, or possible attacks. The criminal acts in the ICS area increased over the past years exponentially, which caused the loss of billions of dollars. This also caused classical Intrusion Detection Systems and Intrusion Prevention Systems to evolve in order to protect among IT also ICS networks. However, these systems need sufficient data such as traffic logs, protocol information, attack patterns, anomaly behavior marks and many others. To provide such data, the requirements for the test environment are summarized in this paper. Moreover, we also introduce more than twenty common vulnerabilities across the ICS together with information about possible risk, attack vector (point), possible detection methods and communication layer occurrence. Therefore, the paper might be used as a base-ground for building sufficient data generator for machine learning and artificial intelligence algorithms often used in ICS/IDS systems.

Es-Salhi, Khaoula, Espes, David, Cuppens, Nora.  2019.  DTE Access Control Model for Integrated ICS Systems. Proceedings of the 14th International Conference on Availability, Reliability and Security. :1–9.

Integrating Industrial Control Systems (ICS) with Corporate System (IT) is one of the most important industrial orientations. With recent cybersecurity attacks, the security of integrated ICS systems has become the priority of industrial world. Access control technologies such as firewalls are very important for Integrated ICS (IICS) systems to control communication across different networks to protect valuable resources. However, conventional firewalls are not always fully compatible with Industrial Control Systems. In fact, firewalls can introduce significant latency while ICS systems usually are very demanding in terms of timing requirements. Besides, most of existing firewalls do not support all industrial protocols. This paper proposes a new access control model for integrated ICS systems based on Domain and Type Enforcement (DTE). This new model allows to define and apply enforced access controls with respect of ICS timing requirements. Access controls definition is based on a high level language that can be used by ICS administrators with ease. This paper also proposes an initial generic ruleset based on the ISA95 functional model. This generic ruleset simplifies the deployment of DTE access controls and provides a good introduction to the DTE concepts for administrators.

Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

Chekole, Eyasu Getahun, Huaqun, Guo.  2019.  ICS-SEA: Formally Modeling the Conflicting Design Constraints in ICS. Proceedings of the Fifth Annual Industrial Control System Security (ICSS) Workshop. :60–69.

Industrial control systems (ICS) have been widely adopted in mission-critical infrastructures. However, the increasing prevalence of cyberattacks targeting them has been a critical security concern. On the other hand, the high real-time and availability requirements of ICS limits the applicability of certain available security solutions due to the performance overhead they introduce and the system unavailability they cause. Moreover, scientific metrics (mathematical models) are not available to evaluate the efficiency and resilience of security solutions in the ICS context. Hence, in this paper, we propose ICS-SEA to address the ICS design constraints of Security, Efficiency, and Availability (SEA). Our ICS-SEA formally models the real-time constraints and physical-state resiliency quantitatively based on a typical ICS. We then design two real-world ICS testbeds and evaluate the efficiency and resilience of a few selected security solutions using our defined models. The results show that our ICS-SEA is effective to evaluate security solutions against the SEA conflicting design constraints in ICS.

Azimi, Mahdi, Sami, Ashkan, Khalili, Abdullah.  2014.  A Security Test-Bed for Industrial Control Systems. Proceedings of the 1st International Workshop on Modern Software Engineering Methods for Industrial Automation. :26–31.

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA), Distributed Control Systems (DCS) and Distributed Automation Systems (DAS) control and monitor critical infrastructures. In recent years, proliferation of cyber-attacks to ICS revealed that a large number of security vulnerabilities exist in such systems. Excessive security solutions are proposed to remove the vulnerabilities and improve the security of ICS. However, to the best of our knowledge, none of them presented or developed a security test-bed which is vital to evaluate the security of ICS tools and products. In this paper, a test-bed is proposed for evaluating the security of industrial applications by providing different metrics for static testing, dynamic testing and network testing in industrial settings. Using these metrics and results of the three tests, industrial applications can be compared with each other from security point of view. Experimental results on several real world applications indicate that proposed test-bed can be successfully employed to evaluate and compare the security level of industrial applications.

Abdelghani, TSCHROUB.  2019.  Industrial Control Systems (Ics) Security in Power Transmission Network. 2019 Algerian Large Electrical Network Conference (CAGRE). :1–4.

The goal of this document is to provide knowledge of Security for Industrial Control Systems (ICS,) such as supervisory control and data acquisition (SCADA) which is implemented in power transmission network, power stations, power distribution grids and other big infrastructures that affect large number of persons and security of nations. A distinction between IT and ICS security is given to make a difference between the two disciplines. In order to avoid intrusion and destruction of industrials plants, some recommendations are given to preserve their security.

Zhuang, Yuan, Pang, Qiaoyue, Wei, Min.  2019.  Secure and Fast Multiple Nodes Join Mechanism for IPv6-Based Industrial Wireless Network. 2019 International Conference on Information Networking (ICOIN). :1–6.
More and more industrial devices are expected to connect to the internet seamlessly. IPv6-based industrial wireless network can solve the address resources limitation problem. It is a challenge about how to ensure the wireless node join security after introducing the IPv6. In this paper, we propose a multiple nodes join mechanism, which includes a timeslot allocation method and secure join process for the IPv6 over IEEE 802.15.4e network. The timeslot allocation method is designed in order to configure communication resources in the join process for the new nodes. The test platform is implemented to verify the feasibility of the mechanism. The result shows that the proposed mechanism can reduce the communication cost for multiple nodes join process and improve the efficiency.
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
Orellana, Cristian, Villegas, Mónica M., Astudillo, Hernán.  2019.  Mitigating Security Threats through the Use of Security Tactics to Design Secure Cyber-Physical Systems (CPS). Proceedings of the 13th European Conference on Software Architecture - Volume 2. :109–115.
Cyber-Physical Systems (CPS) attract growing interest from architects and attackers, given their potential effect on privacy and safety of ecosystems and users. Architectural tactics have been proposed as a design-time abstraction useful to guide and evaluate systems design decisions that address specific system qualities, but there is little published evidence of how Security Tactics help to mitigate security threats in the context of Cyber-Physical Systems. This article reports the principled derivation of architectural tactics for an actual SCADA-SAP bridge, where security was the key concern; the key inputs were (1) a well-known taxonomies of architectural tactics, and (2) a detailed record of trade-offs among these tactics. The project architects used client-specified quality attributes to identify relevant tactics in the taxonomy, and information on their trade-offs to guide top-level decisions on system global shape. We venture that all architectural tactics taxonomies should be enriched with explicit trade-offs, allowing architects to compare alternative solutions that seem equally good on principle but are not so in practice.
Mazurczyk, Wojciech, Powójski, Krystian, Caviglione, Luca.  2019.  IPv6 Covert Channels in the Wild. Proceedings of the Third Central European Cybersecurity Conference. :1–6.
The increasing diffusion of malware endowed with steganographic techniques requires to carefully identify and evaluate a new set of threats. The creation of a covert channel to hide a communication within network traffic is one of the most relevant, as it can be used to exfiltrate information or orchestrate attacks. Even if network steganography is becoming a well-studied topic, only few works focus on IPv6 and consider real network scenarios. Therefore, this paper investigates IPv6 covert channels deployed in the wild. Also, it presents a performance evaluation of six different data hiding techniques for IPv6 including their ability to bypass some intrusion detection systems. Lastly, ideas to detect IPv6 covert channels are presented.
Luckie, Matthew, Beverly, Robert, Koga, Ryan, Keys, Ken, Kroll, Joshua A., claffy, k.  2019.  Network Hygiene, Incentives, and Regulation: Deployment of Source Address Validation in the Internet. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. :465–480.
The Spoofer project has collected data on the deployment and characteristics of IP source address validation on the Internet since 2005. Data from the project comes from participants who install an active probing client that runs in the background. The client automatically runs tests both periodically and when it detects a new network attachment point. We analyze the rich dataset of Spoofer tests in multiple dimensions: across time, networks, autonomous systems, countries, and by Internet protocol version. In our data for the year ending August 2019, at least a quarter of tested ASes did not filter packets with spoofed source addresses leaving their networks. We show that routers performing Network Address Translation do not always filter spoofed packets, as 6.4% of IPv4/24 tested in the year ending August 2019 did not filter. Worse, at least two thirds of tested ASes did not filter packets entering their networks with source addresses claiming to be from within their network that arrived from outside their network. We explore several approaches to encouraging remediation and the challenges of evaluating their impact. While we have been able to remediate 352 IPv4/24, we have found an order of magnitude more IPv4/24 that remains unremediated, despite myriad remediation strategies, with 21% unremediated for more than six months. Our analysis provides the most complete and confident picture of the Internet's susceptibility to date of this long-standing vulnerability. Although there is no simple solution to address the remaining long-tail of unremediated networks, we conclude with a discussion of possible non-technical interventions, and demonstrate how the platform can support evaluation of the impact of such interventions over time.
Liang, Xiao, Chen, Heyao.  2019.  A SDN-Based Hierarchical Authentication Mechanism for IPv6 Address. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :225–225.
The emergence of IPv6 protocol extends the address pool, but it also exposes all the Internet-connected devices to danger. Currently, there are some traditional schemes on security management of network addresses, such as prevention, traceability and encryption authentication, but few studies work on IPv6 protocol. In this paper, we propose a hierarchical authentication mechanism for the IPv6 source address with the technology of software defined network (SDN). This mechanism combines the authentication of three parts, namely the access network, the intra-domain and the inter-domain. And it can provide a fine-grained security protection for the devices using IPv6 addresses.
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.
Jain, Jay Kumar, Chauhan, Dipti.  2019.  Analytical Study on Mobile Ad Hoc Networks for IPV6. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
The ongoing progressions in wireless innovation have lead to the advancement of another remote framework called Mobile Ad hoc Networks. The Mobile Ad hoc Network is a self arranging system of wireless gadgets associated by wireless connections. The traditional protocol, for example, TCP/IP has restricted use in Mobile impromptu systems in light of the absence of portability and assets. This has lead to the improvement of many steering conventions, for example, proactive, receptive and half breed. One intriguing examination zone in MANET is steering. Steering in the MANETs is a testing assignment and has gotten a colossal measure of consideration from examines. An uncommon consideration is paid on to feature the combination of MANET with the critical highlights of IPv6, for example, coordinated security, start to finish correspondence. This has prompted advancement of various directing conventions for MANETs, and every creator of each developed convention contends that the technique proposed gives an improvement over various distinctive systems considered in the writing for a given system situation. In this way, it is very hard to figure out which conventions may perform best under various diverse system situations, for example, expanding hub thickness and traffic. In this paper, we give the ongoing expository investigation on MANETs for IPV6 systems.
Izem, Acia, Wakrim, Mohamed, Ghadi, Abderrahim.  2019.  Logical Topology of Networks Implementing IPv6 Addressing. Proceedings of the 4th International Conference on Smart City Applications. :1–10.
The massive growth of the global routing tables is one of the biggest problems that still face internet nowadays. This problem is mainly caused by the random distribution of IPv4 addresses. With the immigration to IPv6 and the large ranges of addresses provided by this protocol, it is crucial to wisely manage the assignment of IPv6 prefixes. In this paper, we propose a process to generate a logical topology of IPv6 networks. This topology uses perfectly the summarization technique and consists in representing the summary routes in hierarchical manner such that large range of addresses represents several smaller ranges. The proposed aggregation process optimizes and divides up the routing tables which may help resolve the problem of the explosive growth of internet routing tables. Furthermore, the logical topology can be easly customized to fit the features of the routers that are used in the network.
He, Lin, Ren, Gang, Liu, Ying.  2019.  Bootstrapping Accountability and Privacy to IPv6 Internet without Starting from Scratch. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :1486–1494.
Accountability and privacy are considered valuable but conflicting properties in the Internet, which at present does not provide native support for either. Past efforts to balance accountability and privacy in the Internet have unsatisfactory deployability due to the introduction of new communication identifiers, and because of large-scale modifications to fully deployed infrastructures and protocols. The IPv6 is being deployed around the world and this trend will accelerate. In this paper, we propose a private and accountable proposal based on IPv6 called PAVI that seeks to bootstrap accountability and privacy to the IPv6 Internet without introducing new communication identifiers and large-scale modifications to the deployed base. A dedicated quantitative analysis shows that the proposed PAVI achieves satisfactory levels of accountability and privacy. The results of evaluation of a PAVI prototype show that it incurs little performance overhead, and is widely deployable.
Gao, Jiaqiong, Wang, Tao.  2019.  Research on the IPv6 Technical Defects and Countermeasures. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :165–170.
The current global Internet USES the TCP/IP protocol cluster, the current version is IPv4. The IPv4 is with 32-bit addresses, the maximum number of computers connected to the Internet in the world is 232. With the development of Internet of things, big data and cloud storage and other technologies, the limited address space defined by IPv4 has been exhausted. To expand the address space, the IETF designed the next generation IPv6 to replace IPv4. IPv6 using a 128-bit address length that provides almost unlimited addresses. However, with the development and application of the Internet of things, big data and cloud storage, IPv6 has some shortcomings in its addressing structure design; security and network compatibility, These technologies are gradually applied in recent years, the continuous development of new technologies application show that the IPv6 address structure design ideas have some fatal defects. This paper proposed a route to upgrade the original IPv4 by studying on the structure of IPv6 "spliced address", and point out the defects in the design of IPv6 interface ID and the potential problems such as security holes.
Yan, Yan, Oswald, Elisabeth.  2019.  Examining the Practical Side Channel Resilience of ARX-Boxes. Proceedings of the 16th ACM International Conference on Computing Frontiers. :373–379.
Implementations of ARX ciphers are hoped to have some intrinsic side channel resilience owing to the specific choice of cipher components: modular addition (A), rotation (R) and exclusive-or (X). Previous work has contributed to this understanding by developing theory regarding the side channel resilience of components (pioneered by the early works of Prouff) as well as some more recent practical investigations by Biryukov et al. that focused on lightweight cipher constructions. We add to this work by specifically studying ARX-boxes both mathematically as well as practically. Our results show that previous works' reliance on the simplistic assumption that intermediates independently leak (their Hamming weight) has led to the incorrect conclusion that the modular addition is necessarily the best target and that ARX constructions are therefore harder to attack in practice: we show that on an ARM M0, the best practical target is the exclusive or and attacks succeed with only tens of traces.
Nejati, Saeed, Ganesh, Vijay.  2019.  CDCL(Crypto) SAT Solvers for Cryptanalysis. Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering. :311–316.
Over the last two decades we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers on industrial problems from a variety of domains. The availability of such a powerful general-purpose search tools as SAT solvers has led many researchers to propose SAT-based methods for cryptanalysis, including techniques for finding collisions in hash functions and breaking symmetric encryption schemes. Most of the previously proposed SAT-based cryptanalysis approaches are blackbox techniques, in the sense that the cryptanalysis problem is encoded as a SAT instance and then a CDCL SAT solver is invoked to solve the said instance. A weakness of this approach is that the encoding thus generated may be too large for any modern solver to solve efficiently. Perhaps a more important weakness of this approach is that the solver is in no way specialized or tuned to solve the given instance. To address these issues, we propose an approach called CDCL(Crypto) (inspired by the CDCL(T) paradigm in Satisfiability Modulo Theory solvers) to tailor the internal subroutines of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives. Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers with specialized codes that have knowledge about the cryptographic primitive being analyzed by the solver. We demonstrate the power of this approach in differential path a nd a lgebraic fault analysis of hash functions. Our initial results encourages the fact that this approach can significantly improve the blackbox SAT-based cryptanalysis.
Mercadier, Darius, Dagand, Pierre-Évariste.  2019.  Usuba: High-Throughput and Constant-Time Ciphers, by Construction. Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. :157–173.
Cryptographic primitives are subject to diverging imperatives. Functional correctness and auditability pushes for the use of a high-level programming language. Performance and the threat of timing attacks push for using no more abstract than an assembler to exploit (or avoid!) the micro-architectural features of a given machine. We believe that a suitable programming language can reconcile both views and actually improve on the state of the art of both. Usuba is an opinionated dataflow programming language in which block ciphers become so simple as to be ``obviously correct'' and whose types document and enforce valid parallelization strategies at the granularity of individual bits. Its optimizing compiler, Usubac, produces high-throughput, constant-time implementations performing on par with hand-tuned reference implementations. The cornerstone of our approach is a systematization and generalization of bitslicing, an implementation trick frequently used by cryptographers.
Joshitta, R. Shantha Mary, Arockiam, L., Malarchelvi, P. D. Sheba Kezia.  2019.  Security Analysis of SAT\_Jo Lightweight Block Cipher for Data Security in Healthcare IoT. Proceedings of the 2019 3rd International Conference on Cloud and Big Data Computing. :111–116.
In this fast moving world, every industry is advanced by a new technological paradigm called Internet of Things (IoT). It offers interconnectivity between the digital and the real world which will swiftly transform the style of doing business. It opens up a wide-ranging new array of dynamic opportunities in all industries and is fuelling innovation in every part of life. Due to the constrained nature of the devices in IoT environment, it is difficult to execute complex data encryption algorithms to enhance the security. Moreover, computation overhead caused by the existing cryptographic security algorithms is heavy and has to be minimized. To overcome these challenges, this paper presents the security analysis of the lightweight block cipher SAT\_Jo to ensure the data security in healthcare Internet of Things. It is based on SPN structure and runs for 31 rounds. It encrypts 64-bits of block length with key of 80 bits. Cadence NC-Verilog 5.1 is used for simulation and Cadence Encounter RTL Compiler v10.1 for synthesis. The implementations are synthesized for UMC 90 nm low-leakage Faraday library from technology libraries. Moreover, the proposed SAT\_Jo block cipher withstands in various attacks such as differential attack, linear attack and algebraic attack in healthcare IoT environment.
Harttung, Julian, Franz, Elke, Moriam, Sadia, Walther, Paul.  2019.  Lightweight Authenticated Encryption for Network-on-Chip Communications. Proceedings of the 2019 on Great Lakes Symposium on VLSI. :33–38.
In recent years, Network-on-Chip (NoC) has gained increasing popularity as a promising solution for the challenging interconnection problem in multi-processor systems-on-chip (MPSoCs). However, the interest of adversaries to compromise such systems grew accordingly, mandating the integration of security measures into NoC designs. Within this paper, we introduce three novel lightweight approaches for securing communication in NoCs. The suggested solutions combine encryption, authentication, and network coding in order to ensure confidentiality, integrity, and robustness. With performance being critical in NoC environments, our solutions particularly emphasize low latencies and low chip area. Our approaches were evaluated through extensive software simulations. The results have shown that the performance degradation induced by the protection measures is clearly outweighed by the aforementioned benefits. Furthermore, the area overhead implied by the additional components is reasonably low.
Hao, Kongzhang, Yang, Zhengyi, Lai, Longbin, Lai, Zhengmin, Jin, Xin, Lin, Xuemin.  2019.  PatMat: A Distributed Pattern Matching Engine with Cypher. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. :2921–2924.
Graph pattern matching is one of the most fundamental problems in graph database and is associated with a wide spectrum of applications. Due to its computational intensiveness, researchers have primarily devoted their efforts to improving the performance of the algorithm while constraining the graphs to have singular labels on vertices (edges) or no label. Whereas in practice graphs are typically associated with rich properties, thus the main focus in the industry is instead on powerful query languages that can express a sufficient number of pattern matching scenarios. We demo PatMat in this work to glue together the academic efforts on performance and the industrial efforts on expressiveness. To do so, we leverage the state-of-the-art join-based algorithms in the distributed contexts and Cypher query language - the most widely-adopted declarative language for graph pattern matching. The experiments demonstrate how we are capable of turning complex Cypher semantics into a distributed solution with high performance.