Visible to the public Biblio

Found 4293 results

Filters: Keyword is resilience  [Clear All Filters]
Lu, Shuaibing, Kuang, Xiaohui, Nie, Yuanping, Lin, Zhechao.  2020.  A Hybrid Interface Recovery Method for Android Kernels Fuzzing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :335–346.
Android kernel fuzzing is a research area of interest specifically for detecting kernel vulnerabilities which may allow attackers to obtain the root privilege. The number of Android mobile phones is increasing rapidly with the explosive growth of Android kernel drivers. Interface aware fuzzing is an effective technique to test the security of kernel driver. Existing researches rely on static analysis with kernel source code. However, in fact, there exist millions of Android mobile phones without public accessible source code. In this paper, we propose a hybrid interface recovery method for fuzzing kernels which can recover kernel driver interface no matter the source code is available or not. In white box condition, we employ a dynamic interface recover method that can automatically and completely identify the interface knowledge. In black box condition, we use reverse engineering to extract the key interface information and use similarity computation to infer argument types. We evaluate our hybrid algorithm on on 12 Android smartphones from 9 vendors. Empirical experimental results show that our method can effectively recover interface argument lists and find Android kernel bugs. In total, 31 vulnerabilities are reported in white and black box conditions. The vulnerabilities were responsibly disclosed to affected vendors and 9 of the reported vulnerabilities have been already assigned CVEs.
Moustafa, Nour, Keshky, Marwa, Debiez, Essam, Janicke, Helge.  2020.  Federated TONİoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :848–855.
Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToNİoT, which involve federated data sources collected from Telemetry datasets of IoT services, Operating system datasets of Windows and Linux, and datasets of Network traffic. The paper introduces the testbed and description of TONİoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].
Yadav, Mohini, Shankar, Deepak, Jose, Tom.  2020.  Functional Safety for Braking System through ISO 26262, Operating System Security and DO 254. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–8.
This paper presents an introduction to functional safety through ISO 26262 focusing on system, software and hardware possible failures that bring security threats and discussion on DO 254. It discusses the approach to bridge the gap between different other hazard level and system ability to identify the particular fault and resolve it minimum time span possible. Results are analyzed by designing models to check and avoid all the failures, loophole prior development.
Jain, Ayush, Rahman, M Tanjidur, Guin, Ujjwal.  2020.  ATPG-Guided Fault Injection Attacks on Logic Locking. 2020 IEEE Physical Assurance and Inspection of Electronics (PAINE). :1–6.
Logic Locking is a well-accepted protection technique to enable trust in the outsourced design and fabrication processes of integrated circuits (ICs) where the original design is modified by incorporating additional key gates in the netlist, resulting in a key-dependent functional circuit. The original functionality of the chip is recovered once it is programmed with the secret key, otherwise, it produces incorrect results for some input patterns. Over the past decade, different attacks have been proposed to break logic locking, simultaneously motivating researchers to develop more secure countermeasures. In this paper, we propose a novel stuck-at fault-based differential fault analysis (DFA) attack, which can be used to break logic locking that relies on a stored secret key. This proposed attack is based on self-referencing, where the secret key is determined by injecting faults in the key lines and comparing the response with its fault-free counterpart. A commercial ATPG tool can be used to generate test patterns that detect these faults, which will be used in DFA to determine the secret key. One test pattern is sufficient to determine one key bit, which results in at most \textbackslashtextbarK\textbackslashtextbar test patterns to determine the entire secret key of size \textbackslashtextbarK\textbackslashtextbar. The proposed attack is generic and can be extended to break any logic locked circuits.
LAPIQUE, Maxime, GAVAGSAZ-GHOACHANI, Roghayeh, MARTIN, Jean-Philippe, PIERFEDERICI, Serge, ZAIM, Sami.  2020.  Flatness-based control of a 3-phases PWM rectifier with LCL-filter amp; disturbance observer. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :4685–4690.
In more electrical aircraft, the embedded electrical network is handling more and more vital functions, being more and more strained as well. Attenuation of switching harmonics is a key step in the network reliability, thus filtering elements play a central role. To keep the weight of the embedded network reasonable, weakly damped high-order filters shall be preferred. Flatness-based control (FBC) can offer both high bandwidth regulation and large signal stability proof. This make FBC a good candidate to handle the inherent oscillating behavior of aforementioned filters. However, this control strategy can be tricky to implement, especially with high order systems. Moreover, FBC is more sensor demanding than classic PI-based control. This paper address these two drawbacks. First, a novel trajectory planning for high order systems is proposed. This method does not require multiple derivations. Then the input sensors are removed thanks to a parameters estimator. Feasibility and performances are verified with experimental results. Performances comparison with cascaded-loop topologies are given in final section to prove the relevance of the proposed control strategy.
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  Energy-Storage Fed Smart Inverters for Mitigation of Voltage Fluctuations in Islanded Microgrids. 2020 IEEE Electric Power and Energy Conference (EPEC). :1–6.
The continuous integration of intermittent low-carbon energy resources makes islanded microgrids vulnerable to voltage fluctuations. Besides, different dynamic response of synchronous-based and inverter-based distributed generation (DG) units can result in an instantaneous power imbalance between supply and demand during transients. As a result, the ac-bus voltage of microgrid starts oscillating which might have severe consequences such as blackouts. This paper modifies the conventional control scheme of battery energy storage systems (BESSs) to participate in improving the dynamic behavior of islanded microgrids by mitigating the voltage fluctuations. A piecewise linear-elliptic (PLE) droop is proposed and employed in BESS to achieve an enhanced voltage profile by injecting/absorbing reactive power during transients. In this way, the conventional inverter implemented in BESS turns into a smart inverter to cope with fast transients. Using the proposed approach in this paper, any linear droop curve with a specified coefficient can be replaced by a PLE droop curve. Compared with linear droop, an enhanced dynamic response is achieved by utilizing the proposed PLE droop. Case study results are presented using PSCAD/EMTDC to demonstrate the superiority of the proposed approach in improving the dynamic behavior of islanded microgrids.
Jha, Prabhat Kumar, Prajapat, Ganesh P., Bansal, S. K., Solanki, Urmila.  2020.  Mode Identification and Small Signal Stability Analysis of Variable Speed Wind Power Systems. 2020 International Conference on Power Electronics IoT Applications in Renewable Energy and its Control (PARC). :286–291.
The high penetration of wind power generation into the grid evokes all the concerns for the deep understanding of its behavior and impact on the existing power system. This paper investigates the optimal operation of the Doubly Fed Induction Generator (DFIG) for the maximum power point tracking in deep with modal analysis. The grid connected DFIG system has been examined in two cases viz. open-loop case and closed-loop case where closed-loop case consists the system with the Flux Magnitude Angle Control (FMAC) and Direct Torque Control (DTC) approach. Various modes of the oscillation and their damping factor has been found in both the cases for the examination of the internal behavior of the system. Further, the effectiveness of the all the employed controls along with MPPT when the system is subjected to a stepped wind speed disturbance and voltage-dip have been confirmed. It was found from the simulation and the modal analysis that the frequency of the various oscillating modes is lesser while the damping is improved in the case of DTC control.
Wu, Bi-Yi, Sheng, Xin-Qing.  2020.  On the efficient evaluation of Sommerfeld integrals over an impedance plane: exact and asymptotic expressions. 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). :9–10.
In this work, the efficient evaluation of Sommerfeld integrals (SIs) above an impedance plane is addressed. Started from Weyl's expression of SIs, using the coordinate transformation and steepest descent path approach, an exact single image representation to SIs is derived. This single image representation image eliminates oscillating and slow-decay integrand in traditional SIs, and efficient to calculate. Moreover, the far-field asymptotic behavior of SIs in this case is considered and is represented by the Fresnel-integral related function. A high-order approximation based on series expansion of Fresnel integral is provided for fast evaluation. Finally, the validity of the proposed expressions is verified by numerical examples.
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  PV-Fed Smart Inverters for Mitigation of Voltage and Frequency Fluctuations in Islanded Microgrids. 2020 International Conference on Smart Grids and Energy Systems (SGES). :807–812.
The vulnerability of islanded microgrids to voltage and frequency variations is due to the presence of low-inertia distributed generation (DG) units. Besides, the considerable difference between the inertia of synchronous-based and inverter-based DGs results in a power mismatch between generation and consumption during abnormal conditions. As a result, both voltage and frequency of microgrid ac-bus start oscillating which might lead to blackouts. This paper deploys the traditional controller of photovoltaic (PV) units to improve the dynamics of islanded microgrids by reducing the voltage and frequency deviations. To this end, an adaptive piecewise droop (APD) curve is presented and implemented in PV units to attain a faster balance between supply and demand during transients, leading to an enhanced frequency response. Besides, the reactive-power control loop is equipped with a droop characteristic which enables the PV units to inject/absorb reactive power during transients and participate in voltage-profile enhancement of the system. Case study results are presented using PSCAD/EMTDC to confirm the validity of proposed method in improving the dynamic behavior of islanded microgrids.
Shardyko, Igor, Samorodova, Maria, Titov, Victor.  2020.  Development of Control System for a SEA-Joint Based on Active Damping Injection. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–6.
This paper is devoted to the choice and justification of a joint-level controller for a joint with intrinsic elasticity. Such joints show a number of advantages in terms of shock robustness, interaction safety, energy efficiency and so on. On the other hand, the addition of elastic element, i.e. a torsion spring, leads to oscillating behaviour. Thus, more elaborate controller structure is required. Active damping injection approach is chosen in this article to improve the joint performance and achieve smooth motion. A method to select controller gains is suggested as well which allows step-wise customization, by which either the settling time can be minimized or the motion can be made fully smooth. Finally, the controller performance is verified in simulation.
Wang, Qianqian, Wang, Ben, Yu, Jiangfan, Schweizer, Kathrin, Nelson, Bradley J., Zhang, Li.  2020.  Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. 2020 IEEE International Conference on Robotics and Automation (ICRA). :10285–10291.
We propose thrombolysis using a magnetic nanoparticle microswarm with tissue plasminogen activator (tPA) under ultrasound imaging. The microswarm is generated in blood using an oscillating magnetic field and can be navigated with locomotion along both the long and short axis. By modulating the input field, the aspect ratio of the microswarm can be reversibly tuned, showing the ability to adapt to different confined environments. Simulation results indicate that both in-plane and out-of-plane fluid convection are induced around the microswarm, which can be further enhanced by tuning the aspect ratio of the microswarm. Under ultrasound imaging, the microswarm is navigated in a microchannel towards a blood clot and deformed to obtain optimal lysis. Experimental results show that the lysis rate reaches -0.1725 ± 0.0612 mm3/min in the 37°C blood environment under the influence of the microswarm-induced fluid convection and tPA. The lysis rate is enhanced 2.5-fold compared to that without the microswarm (-0.0681 ± 0.0263 mm3/min). Our method provides a new strategy to increase the efficiency of thrombolysis by applying microswarm-induced fluid convection, indicating that swarming micro/nanorobots have the potential to act as effective tools towards targeted therapy.
Ponomarenko, Vladimir, Navrotskaya, Elena, Prokhorov, Mikhail, Lapsheva, Elena, Ishbulatov, Yuri.  2020.  Communication System Based on Chaotic Time-Delayed Feedback Generator. 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). :192–194.
We study communication systems based on chaotic time-delayed feedback generator. The aim of the study is a comparative assessment of the noise immunity for the four different communication systems at the same levels of the external noise. It is shown that the principle of correlation receiver, which is used in classical communication systems, can be also used in the case where chaotic signals generated by self-oscillating systems with complex behavior are used as reference signals. Systems based on the correlation receiver principles have very high immunity to the external noise.
Madi, Nadim K. M., Madi, Mohammed.  2020.  Analysis of Downlink Scheduling to Bridge between Delay and Throughput in LTE Networks. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). :243–247.
The steady growing trend of user demand in using various 4G mobile broadband applications obligates telecom operators to thoroughly plan a precise Quality of Service (QoS) contract with its subscribers. This directly reveals a challenge in figuring out a sophisticated behavior of radio resources (RBs) at the base station to effectively handle the oscillated loads to fulfill their QoS profiles. This paper elaborates on the above issue by analyzing the behavior of the downlink packet scheduling scheme and proposes a solution to bridge between the two major QoS indicators for Real-Time (RT) services, that are, throughput and delay. The proposed scheduling scheme emphasizes that a prior RBs planning indeed has an immense impact on the behavior of the deployed scheduling rule, particularly, when heterogeneous flows share the channel capacity. System-level simulations are performed to evaluate the proposed scheduling scheme in a comparative manner. The numerical results of throughput and delay assured that diverse QoS profiles can be satisfied in case of considering RBs planning.
AIT ALI, Mohamed Elamine, AGOUZOUL, Mohamed, AANNAQUE, Abdeslam.  2020.  Analytical and numerical study of an oscillating liquid inside a U-tube used as wave energy converter. 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). :1–5.
The objective of this work is to study, using an analytical approach and a numerical simulation, the dynamic behavior of an oscillating liquid inside a fixed U-tube with open ends used as wave energy converter. By establishing a detailed liquid's motion equation and developing a numerical simulation, based on volume of fluid formulation, we quantified the available power that could be extracted for our configuration. A parametrical study using the analytical model showed the effect of each significant parameter on first peak power and subsequent dampening of this peak power, which constitutes a tool for choosing optimal designs. The numerical simulation gave a more realistic model, the obtained results are in good agreements with those of the analytical approach that underestimates the dampening of oscillations. We focused after on influence of the numerical model formulation, mesh type and mesh size on simulation results: no noticeable effect was observed.
Vincelj, Leo, Hrabar, Silvio.  2020.  Dynamical Behavior of Non-Foster Self-oscillating Antenna. 2020 International Symposium ELMAR. :17–20.
An interesting idea of integrated non-Foster self-oscillating radiating system has been introduced recently. The device consists of two identical antennas, a negative impedance converter (NIC) and a tuning circuit. Admittance of one of the antennas is negatively converted via NIC, and cancelled by the positive admittance of the second identical antenna. With the change of frequency, admittances of both antennas change in the exactly same manner. It makes a self-oscillating and perfectly matched pair of antennas, regardless of the operating frequency. The adjustment of the frequency of a self-oscillating signal is achieved by the additional tunable resonant circuit. This paper analyses dynamics of oscillations of such self-oscillating radiating system and compares it with a classical negative resistance oscillator. Moreover, a simple numerical tool for prediction of the frequency and amplitude of oscillations is proposed.
Shang, Qi.  2020.  ONU Authentication Method Based on POTS Key Matching. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :41–43.
A new ONU authentication method based on POTS key matching is proposed, which makes use of ONU's own FXS resources and connects with a pots phone by dialing the corresponding LOID service key and authentication code that will be sent to ONU. The key combined with LOID service key and authentication code received by ONU will be filtered and then the LOID authentication code is obtained, which is put to match with DigitMap preset into the database of ONU. The LOID authentication code will be transmitted to OLT so as to achieve the purpose of ONU authentication and authorization if the match result is successful.
Bangera, Srishti, Billava, Pallavi, Naik, Sunita.  2020.  A Hybrid Encryption Approach for Secured Authentication and Enhancement in Confidentiality of Data. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :781–784.
Currently, data security issues are remaining as a major concern during digital communication. A large amount of crucial data is transmitted through the communication channel. There are many cryptographic algorithms available, which are used for providing data security during communication and storage process. However, the data needs to be decrypted for performing operations, which may lead to elevation of the privilege of data. The pin or passwords used for decryption of data can be easily identified using a brute force attack. This leads to losing the confidentiality of crucial data to an unauthorized user. In the proposed system, a combination of Homomorphic and Honey encryption is used to improve data confidentiality and user authentication problems. Thus, the system provides better data security for the issues related to outsourced databases.
Rahman Mahdi, Md Safiur, Sadat, Md Nazmus, Mohammed, Noman, Jiang, Xiaoqian.  2020.  Secure Count Query on Encrypted Heterogeneous Data. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :548–555.
Cost-effective and efficient sequencing technologies have resulted in massive genomic data availability. To compute on a large-scale genomic dataset, it is often required to outsource the dataset to the cloud. To protect data confidentiality, data owners encrypt sensitive data before outsourcing. Outsourcing enhances data owners to eliminate the storage management problem. Since genome data is large in volume, secure execution of researchers query is challenging. In this paper, we propose a method to securely perform count query on datasets containing genotype, phenotype, and numeric data. Our method modifies the prefix-tree proposed by Hasan et al. [1] to incorporate numerical data. The proposed method guarantees data privacy, output privacy, and query privacy. We preserve the security through encryption and garbled circuits. For a query of 100 single-nucleotide polymorphism (SNPs) sequence, we achieve query execution time approximately 3.5 minutes in a database of 1500 records. To the best of our knowledge, this is the first proposed secure framework that addresses heterogeneous biomedical data including numeric attributes.
Zheng, Yandong, Lu, Rongxing.  2020.  Efficient Privacy-Preserving Similarity Range Query based on Pre-Computed Distances in eHealthcare. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The advance of smart eHealthcare and cloud computing techniques has propelled an increasing number of healthcare centers to outsource their healthcare data to the cloud. Meanwhile, in order to preserve the privacy of the sensitive information, healthcare centers tend to encrypt the data before outsourcing them to the cloud. Although the data encryption technique can preserve the privacy of the data, it inevitably hinders the query functionalities over the outsourced data. Among all practical query functionalities, the similarity range query is one of the most popular ones. However, to our best knowledge, many existing studies on the similarity range query over outsourced data still suffer from the efficiency issue in the query process. Therefore, in this paper, aiming at improving the query efficiency, we propose an efficient privacy-preserving similarity range query scheme based on the precomputed distance technique. In specific, we first introduce a pre-computed distance based similarity range query (PreDSQ) algorithm, which can improve the query efficiency by precomputing some distances. Then, we propose our privacy-preserving similarity query scheme by applying an asymmetric scalar-product-preserving encryption technique to preserve the privacy of the PreDSQ algorithm. Both security analysis and performance evaluation are conducted, and the results show that our proposed scheme is efficient and can well preserve the privacy of data records and query requests.
Wang, Xiangyu, Ma, Jianfeng, Liu, Ximeng, Deng, Robert H., Miao, Yinbin, Zhu, Dan, Ma, Zhuoran.  2020.  Search Me in the Dark: Privacy-preserving Boolean Range Query over Encrypted Spatial Data. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2253–2262.
With the increasing popularity of geo-positioning technologies and mobile Internet, spatial keyword data services have attracted growing interest from both the industrial and academic communities in recent years. Meanwhile, a massive amount of data is increasingly being outsourced to cloud in the encrypted form for enjoying the advantages of cloud computing while without compromising data privacy. Most existing works primarily focus on the privacy-preserving schemes for either spatial or keyword queries, and they cannot be directly applied to solve the spatial keyword query problem over encrypted data. In this paper, we study the challenging problem of Privacy-preserving Boolean Range Query (PBRQ) over encrypted spatial databases. In particular, we propose two novel PBRQ schemes. Firstly, we present a scheme with linear search complexity based on the space-filling curve code and Symmetric-key Hidden Vector Encryption (SHVE). Then, we use tree structures to achieve faster-than-linear search complexity. Thorough security analysis shows that data security and query privacy can be guaranteed during the query process. Experimental results using real-world datasets show that the proposed schemes are efficient and feasible for practical applications, which is at least ×70 faster than existing techniques in the literature.
Masood, Raziqa, Pandey, Nitin, Rana, Q. P..  2020.  DHT-PDP: A Distributed Hash Table based Provable Data Possession Mechanism in Cloud Storage. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :275–279.
The popularity of cloud storage among data users is due to easy maintenance, and no initial infrastructure setup cost as compared to local storage. However, although the data users outsource their data to cloud storage (a third party) still, they concern about their physical data. To check whether the data stored in the cloud storage has been modified or not, public auditing of the data is required before its utilization. To audit over vast outsourced data, the availability of the auditor is an essential requirement as nowadays, data owners are using mobile devices. But unfortunately, a single auditor leads to a single point of failure and inefficient to preserve the security and correctness of outsourced data. So, we introduce a distributed public auditing scheme which is based on peer-to-peer (P2P) architecture. In this work, the auditors are organized using a distributed hash table (DHT) mechanism and audit the outsourced data with the help of a published hashed key of the data. The computation and communication overhead of our proposed scheme is compared with the existing schemes, and it found to be an effective solution for public auditing on outsourced data with no single point of failure.
Bi, Ting, Chen, Xuehong, Li, Jun, Yang, Shuaifeng.  2020.  Research on Industrial Data Desensitization Algorithm Based on Fuzzy Set. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1–5.
With the rapid development of internet technology, informatization and digitalization have penetrated into every link of human social life. A large amount of sensitive data has been accumulated and is still being generated within the enterprise. These sensitive data runs through the daily operation of enterprises and is widely used in business analysis, development and testing, and even some outsourcing business scenarios, which are increasing the possibility of sensitive data leakage and tampering. In fact, due to the improper use of data and the lack of protective measures and other reasons, data leakage events have happened again and again. Therefore, by introducing the concept of fuzzy set and using the membership function method, this paper proposes a desensitization technology framework for industrial data and a data desensitization algorithm based on fuzzy set, and verifies the desensitization effect and protective action on sensitive data of this algorithm through the test data desensitization experiment.
Song, Fuyuan, Qin, Zheng, Zhang, Jixin, Liu, Dongxiao, Liang, Jinwen, Shen, Xuemin Sherman.  2020.  Efficient and Privacy-preserving Outsourced Image Retrieval in Public Clouds. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
With the proliferation of cloud services, cloud-based image retrieval services enable large-scale image outsourcing and ubiquitous image searching. While enjoying the benefits of the cloud-based image retrieval services, critical privacy concerns may arise in such services since they may contain sensitive personal information. In this paper, we propose an efficient and Privacy-Preserving Image Retrieval scheme with Key Switching Technique (PPIRS). PPIRS utilizes the inner product encryption for measuring Euclidean distances between image feature vectors and query vectors in a privacy-preserving manner. Due to the high dimension of the image feature vectors and the large scale of the image databases, traditional secure Euclidean distance comparison methods provide insufficient search efficiency. To prune the search space of image retrieval, PPIRS tailors key switching technique (KST) for reducing the dimension of the encrypted image feature vectors and further achieves low communication overhead. Meanwhile, by introducing locality sensitive hashing (LSH), PPIRS builds efficient searchable indexes for image retrieval by organizing similar images into a bucket. Security analysis shows that the privacy of both outsourced images and queries are guaranteed. Extensive experiments on a real-world dataset demonstrate that PPIRS achieves efficient image retrieval in terms of computational cost.
Badran, Sultan, Arman, Nabil, Farajallah, Mousa.  2020.  Towards a Hybrid Data Partitioning Technique for Secure Data Outsourcing. 2020 21st International Arab Conference on Information Technology (ACIT). :1–9.
In light of the progress achieved by the technology sector in the areas of internet speed and cloud services development, and in addition to other advantages provided by the cloud such as reliability and easy access from anywhere and anytime, most data owners find an opportunity to take advantage of the cloud to store data. However, data owners find a challenge that was and is still facing them in the field of outsourcing, which is protecting sensitive data from leakage. Researchers found that partitioning data into partitions, based on data sensitivity, can be used to protect data from leakage and to increase performance by storing the partition, which contains sensitive data in an encrypted form. In this paper, we review the methods used in designing partitions and dividing data approaches. A hybrid data partitioning approach is proposed to improve these techniques. We consider the frequency attack types used to guess the sensitive data and the most important properties that must be available in order for the encryption to be strong against frequency attacks.
Chennam, K. K., Aluvalu, R., Jabbar, M.A..  2020.  Security and authentication of outsourcing cloud data. 3rd Smart Cities Symposium (SCS 2020). 2020:197–202.
Now a day’s most of the services are related to cloud and becoming more popular in using the services to tenants. Most importantly and famous service of cloud is Database as a Service (DaaS). This cloud service provides various resources as managing, using and administration such as software, hardware and tenants’ networks. The data and executing of queries in database are managed by the administrator from cloud service provider (CSP). Due to lack of trust on third party service provider the security and authentication issues are always facing by the tenants which is motivated us to write this paper. This paper shows the brief description about cryptographic algorithms, various types and query authentication on data. In the end the conclusion of the paper by proposing a new scheme that carry through the security and authentication of querying results of outsourcing cloud data.