Visible to the public Biblio

Filters: Keyword is Forestry  [Clear All Filters]
Elnour, M., Meskin, N., Khan, K. M..  2020.  Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA). :877—884.

Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.

Yerima, S. Y., Alzaylaee, M. K..  2020.  Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.

Wang, Y., Wang, Z., Xie, Z., Zhao, N., Chen, J., Zhang, W., Sui, K., Pei, D..  2020.  Practical and White-Box Anomaly Detection through Unsupervised and Active Learning. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.

Lansley, M., Kapetanakis, S., Polatidis, N..  2020.  SEADer++ v2: Detecting Social Engineering Attacks using Natural Language Processing and Machine Learning. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–6.
Social engineering attacks are well known attacks in the cyberspace and relatively easy to try and implement because no technical knowledge is required. In various online environments such as business domains where customers talk through a chat service with employees or in social networks potential hackers can try to manipulate other people by employing social attacks against them to gain information that will benefit them in future attacks. Thus, we have used a number of natural language processing steps and a machine learning algorithm to identify potential attacks. The proposed method has been tested on a semi-synthetic dataset and it is shown to be both practical and effective.
Hongbin, Z., Wei, W., Wengdong, S..  2020.  Safety and Damage Assessment Method of Transmission Line Tower in Goaf Based on Artificial Intelligence. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :1474—1479.
The transmission line tower is affected by the surface subsidence in the mined out area of coal mine, which will appear the phenomenon of subsidence, inclination and even tower collapse, threatening the operation safety of the transmission line tower in the mined out area. Therefore, a Safety and Damage Assessment Method of Transmission Line Tower in Goaf Based on Artificial Intelligence is proposed. Firstly, the geometric model of the coal seam in the goaf and the structural reliability model of the transmission line tower are constructed to evaluate the safety. Then, the random forest algorithm in artificial intelligence is used to evaluate the damage of the tower, so as to take protective measures in time. Finally, a finite element simulation model of tower foundation interaction is built, and its safety (force) and damage identification are experimentally analyzed. The results show that the proposed method can ensure high accuracy of damage assessment and reliable judgment of transmission line tower safety within the allowable error.
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
Harris, L., Grzes, M..  2019.  Comparing Explanations between Random Forests and Artificial Neural Networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2978—2985.

The decisions made by machines are increasingly comparable in predictive performance to those made by humans, but these decision making processes are often concealed as black boxes. Additional techniques are required to extract understanding, and one such category are explanation methods. This research compares the explanations of two popular forms of artificial intelligence; neural networks and random forests. Researchers in either field often have divided opinions on transparency, and comparing explanations may discover similar ground truths between models. Similarity can help to encourage trust in predictive accuracy alongside transparent structure and unite the respective research fields. This research explores a variety of simulated and real-world datasets that ensure fair applicability to both learning algorithms. A new heuristic explanation method that extends an existing technique is introduced, and our results show that this is somewhat similar to the other methods examined whilst also offering an alternative perspective towards least-important features.

Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

Song, Yufei, Yu, Zongchao, Liu, Xuan, Tian, Jianwei, CHEN, Mu.  2019.  Isolation Forest based Detection for False Data Attacks in Power Systems. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :4170—4174.
Power systems become a primary target of cyber attacks because of the vulnerability of the integrated communication networks. An attacker is able to manipulate the integrity of real-time data by maliciously modifying the readings of meters transmitted to the control center. Moreover, it is demonstrated that such attack can escape the bad data detection in state estimation if the topology and network information of the entire power grid is known to the attacker. In this paper, we propose an isolation forest (IF) based detection algorithm as a countermeasure against false data attack (FDA). This method requires no tedious pre-training procedure to obtain the labels of outliers. In addition, comparing with other algorithms, the IF based detection method can find the outliers quickly. The performance of the proposed detection method is verified using the simulation results on the IEEE 118-bus system.
Raghavan, Pradheepan, Gayar, Neamat El.  2019.  Fraud Detection using Machine Learning and Deep Learning. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :334–339.
Frauds are known to be dynamic and have no patterns, hence they are not easy to identify. Fraudsters use recent technological advancements to their advantage. They somehow bypass security checks, leading to the loss of millions of dollars. Analyzing and detecting unusual activities using data mining techniques is one way of tracing fraudulent transactions. transactions. This paper aims to benchmark multiple machine learning methods such as k-nearest neighbor (KNN), random forest and support vector machines (SVM), while the deep learning methods such as autoencoders, convolutional neural networks (CNN), restricted boltzmann machine (RBM) and deep belief networks (DBN). The datasets which will be used are the European (EU) Australian and German dataset. The Area Under the ROC Curve (AUC), Matthews Correlation Coefficient (MCC) and Cost of failure are the 3-evaluation metrics that would be used.
Srisopha, Kamonphop, Phonsom, Chukiat, Lin, Keng, Boehm, Barry.  2019.  Same App, Different Countries: A Preliminary User Reviews Study on Most Downloaded iOS Apps. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :76—80.
Prior work on mobile app reviews has demonstrated that user reviews contain a wealth of information and are seen as a potential source of requirements. However, most of the studies done in this area mainly focused on mining and analyzing user reviews from the US App Store, leaving reviews of users from other countries unexplored. In this paper, we seek to understand if the perception of the same apps between users from other countries and that from the US differs through analyzing user reviews. We retrieve 300,643 user reviews of the 15 most downloaded iOS apps of 2018, published directly by Apple, from nine English-speaking countries over the course of 5 months. We manually classify 3,358 reviews into several software quality and improvement factors. We leverage a random forest based algorithm to identify factors that can be used to differentiate reviews between the US and other countries. Our preliminary results show that all countries have some factors that are proportionally inconsistent with the US.
Yan, Haonan, Li, Hui, Xiao, Mingchi, Dai, Rui, Zheng, Xianchun, Zhao, Xingwen, Li, Fenghua.  2019.  PGSM-DPI: Precisely Guided Signature Matching of Deep Packet Inspection for Traffic Analysis. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

In the field of network traffic analysis, Deep Packet Inspection (DPI) technology is widely used at present. However, the increase in network traffic has brought tremendous processing pressure on the DPI. Consequently, detection speed has become the bottleneck of the entire application. In order to speed up the traffic detection of DPI, a lot of research works have been applied to improve signature matching algorithms, which is the most influential factor in DPI performance. In this paper, we present a novel method from a different angle called Precisely Guided Signature Matching (PGSM). Instead of matching packets with signature directly, we use supervised learning to automate the rules of specific protocol in PGSM. By testing the performance of a packet in the rules, the target packet could be decided when and which signatures should be matched with. Thus, the PGSM method reduces the number of aimless matches which are useless and numerous. After proposing PGSM, we build a framework called PGSM-DPI to verify the effectiveness of guidance rules. The PGSM-DPI framework consists of PGSM method and open source DPI library. The framework is running on a distributed platform with better throughput and computational performance. Finally, the experimental results demonstrate that our PGSM-DPI can reduce 59.23% original DPI time and increase 21.31% throughput. Besides, all source codes and experimental results can be accessed on our GitHub.

Lv, Chaoxian, Li, Qianmu, Long, Huaqiu, Ren, Yumei, Ling, Fei.  2019.  A Differential Privacy Random Forest Method of Privacy Protection in Cloud. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :470–475.
This paper proposes a new random forest classification algorithm based on differential privacy protection. In order to reduce the impact of differential privacy protection on the accuracy of random forest classification, a hybrid decision tree algorithm is proposed in this paper. The hybrid decision tree algorithm is applied to the construction of random forest, which balances the privacy and classification accuracy of the random forest algorithm based on differential privacy. Experiment results show that the random forest algorithm based on differential privacy can provide high privacy protection while ensuring high classification performance, achieving a balance between privacy and classification accuracy, and has practical application value.
Yan, Donghui, Wang, Yingjie, Wang, Jin, Wang, Honggang, Li, Zhenpeng.  2018.  K-nearest Neighbor Search by Random Projection Forests. 2018 IEEE International Conference on Big Data (Big Data). :4775—4781.
K-nearest neighbor (kNN) search has wide applications in many areas, including data mining, machine learning, statistics and many applied domains. Inspired by the success of ensemble methods and the flexibility of tree-based methodology, we propose random projection forests, rpForests, for kNN search. rpForests finds kNNs by aggregating results from an ensemble of random projection trees with each constructed recursively through a series of carefully chosen random projections. rpForests achieves a remarkable accuracy in terms of fast decay in the missing rate of kNNs and that of discrepancy in the kNN distances. rpForests has a very low computational complexity. The ensemble nature of rpForests makes it easily run in parallel on multicore or clustered computers; the running time is expected to be nearly inversely proportional to the number of cores or machines. We give theoretical insights by showing the exponential decay of the probability that neighboring points would be separated by ensemble random projection trees when the ensemble size increases. Our theory can be used to refine the choice of random projections in the growth of trees, and experiments show that the effect is remarkable.
Nagamani, Ch., Chittineni, Suneetha.  2018.  Network Intrusion Detection Mechanisms Using Outlier Detection. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1468–1473.
The recognition of intrusions has increased impressive enthusiasm for information mining with the acknowledgment that anomalies can be the key disclosure to be produced using extensive network databases. Intrusions emerge because of different reasons, for example, mechanical deficiencies, changes in framework conduct, fake conduct, human blunder and instrument mistake. Surely, for some applications the revelation of Intrusions prompts more intriguing and helpful outcomes than the disclosure of inliers. Discovery of anomalies can prompt recognizable proof of framework blames with the goal that executives can take preventive measures previously they heighten. A network database framework comprises of a sorted out posting of pages alongside programming to control the network information. This database framework has been intended to empower network operations, oversee accumulations of information, show scientific outcomes and to get to these information utilizing networks. It likewise empowers network clients to gather limitless measure of information on unbounded territories of utilization, break down it and return it into helpful data. Network databases are ordinarily used to help information control utilizing dynamic capacities on sites or for putting away area subordinate data. This database holds a surrogate for each network route. The formation of these surrogates is called ordering and each network database does this errand in an unexpected way. In this paper, a structure for compelling access control and Intrusion Detection using outliers has been proposed and used to give viable Security to network databases. The design of this framework comprises of two noteworthy subsystems to be specific, Access Control Subsystem and Intrusion Detection Subsystem. In this paper preprocessing module is considered which clarifies the preparing of preprocessing the accessible information. And rain forest method is discussed which is used for intrusion detection.
Sattar, Naw Safrin, Arifuzzaman, Shaikh, Zibran, Minhaz F., Sakib, Md Mohiuddin.  2019.  An Ensemble Approach for Suspicious Traffic Detection from High Recall Network Alerts. {2019 IEEE International Conference on Big Data (Big Data. :4299—4308}}@inproceedings{wu_ensemble_2019.
Web services from large-scale systems are prevalent all over the world. However, these systems are naturally vulnerable and incline to be intruded by adversaries for illegal benefits. To detect anomalous events, previous works focus on inspecting raw system logs by identifying the outliers in workflows or relying on machine learning methods. Though those works successfully identify the anomalies, their models use large training set and process whole system logs. To reduce the quantity of logs that need to be processed, high recall suspicious network alert systems can be applied to preprocess system logs. Only the logs that trigger alerts are retrieved for further usage. Due to the universally usage of network traffic alerts among Security Operations Center, anomalies detection problems could be transformed to classify truly suspicious network traffic alerts from false alerts.In this work, we propose an ensemble model to distinguish truly suspicious alerts from false alerts. Our model consists of two sub-models with different feature extraction strategies to ensure the diversity and generalization. We use decision tree based boosters and deep neural networks to build ensemble models for classification. Finally, we evaluate our approach on suspicious network alerts dataset provided by 2019 IEEE BigData Cup: Suspicious Network Event Recognition. Under the metric of AUC scores, our model achieves 0.9068 on the whole testing set.
Aldairi, Maryam, Karimi, Leila, Joshi, James.  2019.  A Trust Aware Unsupervised Learning Approach for Insider Threat Detection. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :89–98.

With the rapidly increasing connectivity in cyberspace, Insider Threat is becoming a huge concern. Insider threat detection from system logs poses a tremendous challenge for human analysts. Analyzing log files of an organization is a key component of an insider threat detection and mitigation program. Emerging machine learning approaches show tremendous potential for performing complex and challenging data analysis tasks that would benefit the next generation of insider threat detection systems. However, with huge sets of heterogeneous data to analyze, applying machine learning techniques effectively and efficiently to such a complex problem is not straightforward. In this paper, we extract a concise set of features from the system logs while trying to prevent loss of meaningful information and providing accurate and actionable intelligence. We investigate two unsupervised anomaly detection algorithms for insider threat detection and draw a comparison between different structures of the system logs including daily dataset and periodically aggregated one. We use the generated anomaly score from the previous cycle as the trust score of each user fed to the next period's model and show its importance and impact in detecting insiders. Furthermore, we consider the psychometric score of users in our model and check its effectiveness in predicting insiders. As far as we know, our model is the first one to take the psychometric score of users into consideration for insider threat detection. Finally, we evaluate our proposed approach on CERT insider threat dataset (v4.2) and show how it outperforms previous approaches.

Chowdhury, Mokter M., Fan, Harrison D. E., Chang, Mike, Dridi, Kais, Voon, Kevin, Sawatzky, George A., Nojeh, Alireza.  2018.  The Role of Lateral Confinement in the Localized Heating of Thermionic Emitters Based on Carbon Nanotube Forests. 2018 31st International Vacuum Nanoelectronics Conference (IVNC). :1-2.

When vertically aligned carbon nanotube arrays (CNT forests) are heated by optical, electrical, or any other means, heat confinement in the lateral directions (i.e. perpendicular to the CNTs' axes), which stems from the anisotropic structure of the forest, is expected to play an important role. It has been found that, in spite of being primarily conductive along the CNTs' axes, focusing a laser beam on the sidewall of a CNT forest can lead to a highly localized hot region-an effect known as ``Heat Trap''-and efficient thermionic emission. This unusual heat confinement phenomenon has applications where the spread of heat has to be minimized, but electrical conduction is required, notably in energy conversion (e.g. vacuum thermionics and thermoelectrics). However, despite its strong scientific and practical importance, the existence and role of the lateral heat confinement in the Heat Trap effect have so far been elusive. In this work, for the first time, by using a rotating elliptical laser beam, we directly observe the existence of this lateral heat confinement and its corresponding effects on the unusual temperature rise during the Heat Trap effect.

Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C. D., Ries, T., Ourdane, M..  2018.  Detecting Malicious Authentication Events Trustfully. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1-6.

Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.

Roseline, S. A., Geetha, S..  2018.  Intelligent Malware Detection Using Oblique Random Forest Paradigm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :330-336.

With the increase in the popularity of computerized online applications, the analysis, and detection of a growing number of newly discovered stealthy malware poses a significant challenge to the security community. Signature-based and behavior-based detection techniques are becoming inefficient in detecting new unknown malware. Machine learning solutions are employed to counter such intelligent malware and allow performing more comprehensive malware detection. This capability leads to an automatic analysis of malware behavior. The proposed oblique random forest ensemble learning technique is efficient for malware classification. The effectiveness of the proposed method is demonstrated with three malware classification datasets from various sources. The results are compared with other variants of decision tree learning models. The proposed system performs better than the existing system in terms of classification accuracy and false positive rate.

Neal, T., Sundararajan, K., Woodard, D..  2018.  Exploiting Linguistic Style as a Cognitive Biometric for Continuous Verification. 2018 International Conference on Biometrics (ICB). :270-276.

This paper presents an assessment of continuous verification using linguistic style as a cognitive biometric. In stylometry, it is widely known that linguistic style is highly characteristic of authorship using representations that capture authorial style at character, lexical, syntactic, and semantic levels. In this work, we provide a contrast to previous efforts by implementing a one-class classification problem using Isolation Forests. Our approach demonstrates the usefulness of this classifier for accurately verifying the genuine user, and yields recognition accuracy exceeding 98% using very small training samples of 50 and 100-character blocks.

Li, Z., Li, S..  2017.  Random forest algorithm under differential privacy. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :1901–1905.

Trying to solve the risk of data privacy disclosure in classification process, a Random Forest algorithm under differential privacy named DPRF-gini is proposed in the paper. In the process of building decision tree, the algorithm first disturbed the process of feature selection and attribute partition by using exponential mechanism, and then meet the requirement of differential privacy by adding Laplace noise to the leaf node. Compared with the original algorithm, Empirical results show that protection of data privacy is further enhanced while the accuracy of the algorithm is slightly reduced.