Visible to the public Biblio

Filters: Keyword is power transmission lines  [Clear All Filters]
2021-02-16
Hongbin, Z., Wei, W., Wengdong, S..  2020.  Safety and Damage Assessment Method of Transmission Line Tower in Goaf Based on Artificial Intelligence. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :1474—1479.
The transmission line tower is affected by the surface subsidence in the mined out area of coal mine, which will appear the phenomenon of subsidence, inclination and even tower collapse, threatening the operation safety of the transmission line tower in the mined out area. Therefore, a Safety and Damage Assessment Method of Transmission Line Tower in Goaf Based on Artificial Intelligence is proposed. Firstly, the geometric model of the coal seam in the goaf and the structural reliability model of the transmission line tower are constructed to evaluate the safety. Then, the random forest algorithm in artificial intelligence is used to evaluate the damage of the tower, so as to take protective measures in time. Finally, a finite element simulation model of tower foundation interaction is built, and its safety (force) and damage identification are experimentally analyzed. The results show that the proposed method can ensure high accuracy of damage assessment and reliable judgment of transmission line tower safety within the allowable error.
2020-10-14
Khezrimotlagh, Darius, Khazaei, Javad, Asrari, Arash.  2019.  MILP Modeling of Targeted False Load Data Injection Cyberattacks to Overflow Transmission Lines in Smart Grids. 2019 North American Power Symposium (NAPS). :1—7.
Cyber attacks on transmission lines are one of the main challenges in security of smart grids. These targeted attacks, if not detected, might cause cascading problems in power systems. This paper proposes a bi-level mixed integer linear programming (MILP) optimization model for false data injection on targeted buses in a power system to overflow targeted transmission lines. The upper level optimization problem outputs the optimized false data injections on targeted load buses to overflow a targeted transmission line without violating bad data detection constraints. The lower level problem integrates the false data injections into the optimal power flow problem without violating the optimal power flow constraints. A few case studies are designed to validate the proposed attack model on IEEE 118-bus power system.
2020-09-18
Ameli, Amir, Hooshyar, Ali, El-Saadany, Ehab F..  2019.  Development of a Cyber-Resilient Line Current Differential Relay. IEEE Transactions on Industrial Informatics. 15:305—318.
The application of line current differential relays (LCDRs) to protect transmission lines has recently proliferated. However, the reliance of LCDRs on digital communication channels has raised growing cyber-security concerns. This paper investigates the impacts of false data injection attacks (FDIAs) on the performance of LCDRs. It also develops coordinated attacks that involve multiple components, including LCDRs, and can cause false line tripping. Additionally, this paper proposes a technique for detecting FDIAs against LCDRs and differentiating them from actual faults in two-terminal lines. In this method, when an LCDR detects a fault, instead of immediately tripping the line, it calculates and measures the superimposed voltage at its local terminal, using the proposed positive-sequence (PS) and negative-sequence (NS) submodules. To calculate this voltage, the LCDR models the protected line in detail and replaces the rest of the system with a Thevenin equivalent that produces accurate responses at the line terminals. Afterwards, remote current measurement is utilized by the PS and NS submodules to compute each sequence's superimposed voltage. A difference between the calculated and the measured superimposed voltages in any sequence reveals that the remote current measurements are not authentic. Thus, the LCDR's trip command is blocked. The effectiveness of the proposed method is corroborated using simulation results for the IEEE 39-bus test system. The performance of the proposed method is also tested using an OPAL real-time simulator.
2020-07-20
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
2020-05-08
Yang, Zai-xin, Gao, Chen, Wang, Yun-min.  2018.  Security and Stability Control System Simulation Using RTDS. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :1737—1740.
Analyzing performance of security and stability control system is of great importance for the safe and stable operation of the power grid. Digital dynamic experimental model is built by real time digital simulation (RTDS) in order to research security and stability system of Inner Mongolia in northern 500kV transmission channel. The whole process is closed-loop dynamic real-time simulation. According to power grid network testing technology standard, all kinds of stability control devices need to be tested in a comprehensive system. Focus on the following items: security and stability control strategy, tripping criterion as well as power system low frequency oscillations. Results of the trial indicated that the simulation test platform based on RTDS have the ability of detecting the safe and stable device. It can reflect the action behavior and control characteristics of the safe and stable device accurately. The device can be used in the case of low frequency oscillation of the system.
2020-04-24
Shuvro, Rezoan A., Das, Pankaz, Hayat, Majeed M., Talukder, Mitun.  2019.  Predicting Cascading Failures in Power Grids using Machine Learning Algorithms. 2019 North American Power Symposium (NAPS). :1—6.
Although there has been notable progress in modeling cascading failures in power grids, few works included using machine learning algorithms. In this paper, cascading failures that lead to massive blackouts in power grids are predicted and classified into no, small, and large cascades using machine learning algorithms. Cascading-failure data is generated using a cascading failure simulator framework developed earlier. The data set includes the power grid operating parameters such as loading level, level of load shedding, the capacity of the failed lines, and the topological parameters such as edge betweenness centrality and the average shortest distance for numerous combinations of two transmission line failures as features. Then several machine learning algorithms are used to classify cascading failures. Further, linear regression is used to predict the number of failed transmission lines and the amount of load shedding during a cascade based on initial feature values. This data-driven technique can be used to generate cascading failure data set for any real-world power grids and hence, power-grid engineers can use this approach for cascade data generation and hence predicting vulnerabilities and enhancing robustness of the grid.
Jiang, He, Wang, Zhenhua, He, Haibo.  2019.  An Evolutionary Computation Approach for Smart Grid Cascading Failure Vulnerability Analysis. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :332—338.
The cyber-physical security of smart grid is of great importance since it directly concerns the normal operating of a system. Recently, researchers found that organized sequential attacks can incur large-scale cascading failure to the smart grid. In this paper, we focus on the line-switching sequential attack, where the attacker aims to trip transmission lines in a designed order to cause significant system failures. Our objective is to identify the critical line-switching attack sequence, which can be instructional for the protection of smart grid. For this purpose, we develop an evolutionary computation based vulnerability analysis framework, which employs particle swarm optimization to search the critical attack sequence. Simulation studies on two benchmark systems, i.e., IEEE 24 bus reliability test system and Washington 30 bus dynamic test system, are implemented to evaluate the performance of our proposed method. Simulation results show that our method can yield a better performance comparing with the reinforcement learning based approach proposed in other prior work.
2020-02-17
Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.

2020-02-10
Lakshminarayana, Subhash, Belmega, E. Veronica, Poor, H. Vincent.  2019.  Moving-Target Defense for Detecting Coordinated Cyber-Physical Attacks in Power Grids. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This work proposes a moving target defense (MTD) strategy to detect coordinated cyber-physical attacks (CCPAs) against power grids. A CCPA consists of a physical attack, such as disconnecting a transmission line, followed by a coordinated cyber attack that injects false data into the sensor measurements to mask the effects of the physical attack. Such attacks can lead to undetectable line outages and cause significant damage to the grid. The main idea of the proposed approach is to invalidate the knowledge that the attackers use to mask the effects of the physical attack by actively perturbing the grid's transmission line reactances using distributed flexible AC transmission system (D-FACTS) devices. We identify the MTD design criteria in this context to thwart CCPAs. The proposed MTD design consists of two parts. First, we identify the subset of links for D-FACTS device deployment that enables the defender to detect CCPAs against any link in the system. Then, in order to minimize the defense cost during the system's operational time, we use a game-theoretic approach to identify the best subset of links (within the D-FACTS deployment set) to perturb which will provide adequate protection. Extensive simulations performed using the MATPOWER simulator on IEEE bus systems verify the effectiveness of our approach in detecting CCPAs and reducing the operator's defense cost.
2019-11-19
Nasiruzzaman, A. B. M., Akter, M. N., Mahmud, M. A., Pota, H. R..  2018.  Network Theory Based Power Grid Criticality Assessment. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). :1-5.

A process of critical transmission lines identification in presented here. The criticality is based on network flow, which is essential for power grid connectivity monitoring as well as vulnerability assessment. The proposed method can be utilized as a supplement of traditional situational awareness tool in the energy management system of the power grid control center. At first, a flow network is obtained from topological as well as functional features of the power grid. Then from the duality property of a linear programming problem, the maximum flow problem is converted to a minimum cut problem. Critical transmission lines are identified as a solution of the dual problem. An overall set of transmission lines are identified from the solution of the network flow problem. Simulation of standard IEEE test cases validates the application of the method in finding critical transmission lines of the power grid.

Khaledian, Parviz, Johnson, Brian K., Hemati, Saied.  2018.  Power Grid Security Improvement by Remedial Action Schemes Using Vulnerability Assessment Based on Fault Chains and Power Flow. 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1-6.

The risk of large-scale blackouts and cascading failures in power grids can be due to vulnerable transmission lines and lack of proper remediation techniques after recognizing the first failure. In this paper, we assess the vulnerability of a system using fault chain theory and a power flow-based method, and calculate the probability of large-scale blackout. Further, we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and to harden the critical components against intentional attacks. To identify the most critical lines more efficiently, a new vulnerability index is presented. The effectiveness of the new index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.

2019-04-05
Shu, H., Shen, X., Xu, L., Guo, Q., Sun, H..  2018.  A Validity Test Methodfor Transmission Betweens and Transmission Sections Based on Chain Attack Analysisand Line Outage Distribution Factors. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.

2019-01-21
Hasan, S., Ghafouri, A., Dubey, A., Karsai, G., Koutsoukos, X..  2018.  Vulnerability analysis of power systems based on cyber-attack and defense models. 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.

2018-04-04
Liang, J., Sankar, L., Kosut, O..  2017.  Vulnerability analysis and consequences of false data injection attack on power system state estimation. 2017 IEEE Power Energy Society General Meeting. :1–1.
An unobservable false data injection (FDI) attack on AC state estimation (SE) is introduced and its consequences on the physical system are studied. With a focus on understanding the physical consequences of FDI attacks, a bi-level optimization problem is introduced whose objective is to maximize the physical line flows subsequent to an FDI attack on DC SE. The maximization is subject to constraints on both attacker resources (size of attack) and attack detection (limiting load shifts) as well as those required by DC optimal power flow (OPF) following SE. The resulting attacks are tested on a more realistic non-linear system model using AC state estimation and ACOPF, and it is shown that, with an appropriately chosen sub-network, the attacker can overload transmission lines with moderate shifts of load.
2018-02-27
Qiao, Z., Cheng, L., Zhang, S., Yang, L., Guo, C..  2017.  Detection of Composite Insulators Inner Defects Based on Flash Thermography. 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE). :359–363.

Usually, the air gap will appear inside the composite insulators and it will lead to serious accident. In order to detect these internal defects in composite insulators operated in the transmission lines, a new non-destructive technique has been proposed. In the study, the mathematical analysis model of the composite insulators inner defects, which is about heat diffusion, has been build. The model helps to analyze the propagation process of heat loss and judge the structure and defects under the surface. Compared with traditional detection methods and other non-destructive techniques, the technique mentioned above has many advantages. In the study, air defects of composite insulators have been made artificially. Firstly, the artificially fabricated samples are tested by flash thermography, and this method shows a good performance to figure out the structure or defects under the surface. Compared the effect of different excitation between flash and hair drier, the artificially samples have a better performance after heating by flash. So the flash excitation is better. After testing by different pollution on the surface, it can be concluded that different pollution don't have much influence on figuring out the structure or defect under the surface, only have some influence on heat diffusion. Then the defective composite insulators from work site are detected and the image of defect is clear. This new active thermography system can be detected quickly, efficiently and accurately, ignoring the influence of different pollution and other environmental restrictions. So it will have a broad prospect of figuring out the defeats and structure in composite insulators even other styles of insulators.

2018-02-15
Wu, H., Liu, J., Liu, Y., Qiu, G., Taylor, G. A..  2017.  Power system transmission line fault diagnosis based on combined data analytics. 2017 IEEE Power Energy Society General Meeting. :1–5.

As a consequence of the recent development of situational awareness technologies for smart grids, the gathering and analysis of data from multiple sources offer a significant opportunity for enhanced fault diagnosis. In order to achieve improved accuracy for both fault detection and classification, a novel combined data analytics technique is presented and demonstrated in this paper. The proposed technique is based on a segmented approach to Bayesian modelling that provides probabilistic graphical representations of both electrical power and data communication networks. In this manner, the reliability of both the data communication and electrical power networks are considered in order to improve overall power system transmission line fault diagnosis.

Silva, P. R. N., Carvalho, A. P., Gabbar, H. A., Vieira, P., Costa, C. T..  2017.  Fault Diagnosis in Transmission Lines Based on Leakage Current and Qualitative Trend Analysis. 2017 International Conference on Promising Electronic Technologies (ICPET). :87–92.

Transmission lines' monitoring systems produce a large amount of data that hinders faults diagnosis. For this reason, approaches that can acquire and automatically interpret the information coming from lines' monitoring are needed. Furthermore, human errors stemming from operator dependent real-time decision need to be reduced. In this paper a multiple faults diagnosis method to determine transmission lines' operating conditions is proposed. Different scenarios, including insulator chains contamination with different types and concentrations of pollutants were modeled by equivalents circuits. Their performance were characterized by leakage current (LC) measurements and related to specific fault modes. Features extraction's algorithm relying on the difference between normal and faulty conditions were used to define qualitative trends for the diagnosis of various fault modes.

2018-02-06
Gavgani, M. H., Eftekharnejad, S..  2017.  A Graph Model for Enhancing Situational Awareness in Power Systems. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.

As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.

2017-11-27
Ghanbari, R., Jalili, M., Yu, X..  2016.  Analysis of cascaded failures in power networks using maximum flow based complex network approach. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. :4928–4932.

Power networks can be modeled as networked structures with nodes representing the bus bars (connected to generator, loads and transformers) and links representing the transmission lines. In this manuscript we study cascaded failures in power networks. As network structures we consider IEEE 118 bus network and a random spatial model network with similar properties to IEEE 118 bus network. A maximum flow based model is used to find the central edges. We study cascaded failures triggered by both random and targeted attacks to the edges. In the targeted attack the edge with the maximum centrality value is disconnected from the network. A number of metrics including the size of the largest connected component, the number of failed edges, the average maximum flow and the global efficiency are studied as a function of capacity parameter (edge critical load is proportional to its capacity parameter and nominal centrality value). For each case we identify the critical capacity parameter by which the network shows resilient behavior against failures. The experiments show that one should further protect the network for a targeted attack as compared to a random failure.

Yanbing, J., Ruiqiong, L., Shanxi, H. X., Peng, W..  2016.  Risk assessment of cascading failures in power grid based on complex network theory. 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). :1–6.

Cascading failure is an intrinsic threat of power grid to cause enormous cost of society, and it is very challenging to be analyzed. The risk of cascading failure depends both on its probability and the severity of consequence. It is impossible to analyze all of the intrinsic attacks, only the critical and high probability initial events should be found to estimate the risk of cascading failure efficiently. To recognize the critical and high probability events, a cascading failure analysis model for power transmission grid is established based on complex network theory (CNT) in this paper. The risk coefficient of transmission line considering the betweenness, load rate and changeable outage probability is proposed to determine the initial events of power grid. The development tendency of cascading failure is determined by the network topology, the power flow and boundary conditions. The indicators of expected percentage of load loss and line cut are used to estimate the risk of cascading failure caused by the given initial malfunction of power grid. Simulation results from the IEEE RTS-79 test system show that the risk of cascading failure has close relations with the risk coefficient of transmission lines. The value of risk coefficient could be useful to make vulnerability assessment and to design specific action to reduce the topological weakness and the risk of cascading failure of power grid.

2015-05-01
Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.
 

Yihai Zhu, Jun Yan, Yufei Tang, Sun, Y.L., Haibo He.  2014.  Resilience Analysis of Power Grids Under the Sequential Attack. Information Forensics and Security, IEEE Transactions on. 9:2340-2354.

The modern society increasingly relies on electrical service, which also brings risks of catastrophic consequences, e.g., large-scale blackouts. In the current literature, researchers reveal the vulnerability of power grids under the assumption that substations/transmission lines are removed or attacked synchronously. In reality, however, it is highly possible that such removals can be conducted sequentially. Motivated by this idea, we discover a new attack scenario, called the sequential attack, which assumes that substations/transmission lines can be removed sequentially, not synchronously. In particular, we find that the sequential attack can discover many combinations of substation whose failures can cause large blackout size. Previously, these combinations are ignored by the synchronous attack. In addition, we propose a new metric, called the sequential attack graph (SAG), and a practical attack strategy based on SAG. In simulations, we adopt three test benchmarks and five comparison schemes. Referring to simulation results and complexity analysis, we find that the proposed scheme has strong performance and low complexity.