Visible to the public Biblio

Filters: Keyword is statistical analysis  [Clear All Filters]
Wu, Zhengze, Zhang, Xiaohong, Zhong, Xiaoyong.  2019.  Generalized Chaos Synchronization Circuit Simulation and Asymmetric Image Encryption. IEEE Access. 7:37989–38008.
Generalized chaos systems have more complex dynamic behavior than conventional chaos systems. If a generalized response system can be synchronized with a conventional drive system, the flexible control parameters and unpredictable synchronization state will increase significantly. The study first constructs a four-dimensional nonlinear dynamic equation with quadratic variables as a drive system. The numerical simulation and analyses of the Lyapunov exponent show that it is also a chaotic system. Based on the generalized chaos synchronization (GCS) theory, a four-dimensional diffeomorphism function is designed, and the corresponding GCS response system is generated. Simultaneously, the structural and synchronous circuits of information interaction and control are constructed with Multisim™ software, with the circuit simulation resulting in a good agreement with the numerical calculations. In order to verify the practical effect of generalized synchronization, an RGB digital image secure communication scheme is proposed. We confuse a 24-bit true color image with the designed GCS system, extend the original image to 48-bits, analyze the scheme security from keyspace, key sensitivity and non-symmetric identity authentication, classical types of attacks, and statistical average from the histogram, image correlation. The research results show that this GCS system is simple and feasible, and the encryption algorithm is closely related to the confidential information, which can resist the differential attack. The scheme is suitable to be applied in network images or other multimedia safe communications.
Wasi, Sarwar, Shams, Sarmad, Nasim, Shahzad, Shafiq, Arham.  2019.  Intrusion Detection Using Deep Learning and Statistical Data Analysis. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1–5.
Innovation and creativity have played an important role in the development of every field of life, relatively less but it has created several problems too. Intrusion detection is one of those problems which became difficult with the advancement in computer networks, multiple researchers with multiple techniques have come forward to solve this crucial issue, but network security is still a challenge. In our research, we have come across an idea to detect intrusion using a deep learning algorithm in combination with statistical data analysis of KDD cup 99 datasets. Firstly, we have applied statistical analysis on the given data set to generate a simplified form of data, so that a less complex binary classification model of artificial neural network could apply for data classification. Our system has decreased the complexity of the system and has improved the response time.
Liu, Xianyu, Zheng, Min, Pan, Aimin, Lu, Quan.  2018.  Hardening the Core: Understanding and Detection of XNU Kernel Vulnerabilities. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :10–13.
The occurrence of security vulnerabilities in kernel, especially for macOS/iOS kernel XNU, has increased rapidly in recent years. Naturally, concerns were raised due to the high risks they would lead to, which in general are much more serious than common application vulnerabilities. However, discovering XNU kernel vulnerabilities is always very challenging, and the main approach in practice is still manual analysis, which obviously is not a scalable method. In this paper, we perform an in-depth empirical study on the 406 published XNU kernel vulnerabilities to identify distinguishing characteristics of them and then leverage the features to guide our vulnerability detection, i.e., locating suspicious functions. To further improve the efficiency of vulnerability detection, we present KInspector, a new and lightweight framework to detect XNU kernel vulnerabilities by leveraging feedback-based fuzzing techniques. We thoroughly evaluate our approach on XNU with various versions, and the results turn out to be quite promising: 21 N/0-day vulnerabilities have been discovered in our experiments.
Ding, Yueming, Li, Kuan, Meng, Zhaoxian.  2018.  CPS Optimal Control for Interconnected Power Grid Based on Model Predictive Control. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1—9.

The CPS standard can be more objective to evaluate the effect of control behavior in each control area on the interconnected power grid. The CPS standard is derived from statistical methods emphasizing the long-term control performance of AGC, which is beneficial to the frequency control of the power grid by mutual support between the various power grids in the case of an accident. Moreover, CPS standard reduces the wear of the equipment caused by the frequent adjustment of the AGC unit. The key is to adjust the AGC control strategy to meet the performance of CPS standard. This paper proposed a dynamic optimal CPS control methodology for interconnected power systems based on model predictive control which can achieve optimal control under the premise of meeting the CPS standard. The effectiveness of the control strategy is verified by simulation examples.

Ahuja, Nisha, Singal, Gaurav.  2019.  DDOS Attack Detection Prevention in SDN using OpenFlow Statistics. 2019 IEEE 9th International Conference on Advanced Computing (IACC). :147–152.
Software defined Network is a network defined by software, which is one of the important feature which makes the legacy old networks to be flexible for dynamic configuration and so can cater to today's dynamic application requirement. It is a programmable network but it is prone to different type of attacks due to its centralized architecture. The author provided a solution to detect and prevent Distributed Denial of service attack in the paper. Mininet [5] which is a popular emulator for Software defined Network is used. We followed the approach in which collection of the traffic statistics from the various switches is done. After collection we calculated the packet rate and bandwidth which shoots up to high values when attack take place. The abrupt increase detects the attack which is then prevented by changing the forwarding logic of the host nodes to drop the packets instead of forwarding. After this, no more packets will be forwarded and then we also delete the forwarding rule in the flow table. Hence, we are finding out the change in packet rate and bandwidth to detect the attack and to prevent the attack we modify the forwarding logic of the switch flow table to drop the packets coming from malicious host instead of forwarding it.
Santini, Paolo, Baldi, Marco, Chiaraluce, Franco.  2019.  Cryptanalysis of a One-Time Code-Based Digital Signature Scheme. 2019 IEEE International Symposium on Information Theory (ISIT). :2594–2598.
We consider a one-time digital signature scheme recently proposed by Persichetti and show that a successful key recovery attack can be mounted with limited complexity. The attack we propose exploits a single signature intercepted by the attacker, and relies on a statistical analysis performed over such a signature, followed by information set decoding. We assess the attack complexity and show that a full recovery of the secret key can be performed with a work factor that is far below the claimed security level. The efficiency of the attack is motivated by the sparsity of the signature, which leads to a significant information leakage about the secret key.
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Facial Expression Recognition Using Merged Convolution Neural Network. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :296—298.

In this paper, a merged convolution neural network (MCNN) is proposed to improve the accuracy and robustness of real-time facial expression recognition (FER). Although there are many ways to improve the performance of facial expression recognition, a revamp of the training framework and image preprocessing renders better results in applications. When the camera is capturing images at high speed, however, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of human facial expression. To solve this problem, we propose a statistical method for recognition results obtained from previous images, instead of using the current recognition output. Experimental results show that the proposed method can satisfactorily recognize seven basic facial expressions in real time.

Puteaux, Pauline, Puech, William.  2018.  Noisy Encrypted Image Correction based on Shannon Entropy Measurement in Pixel Blocks of Very Small Size. 2018 26th European Signal Processing Conference (EUSIPCO). :161–165.
Many techniques have been presented to protect image content confidentiality. The owner of an image encrypts it using a key and transmits the encrypted image across a network. If the recipient is authorized to access the original content of the image, he can reconstruct it losslessly. However, if during the transmission the encrypted image is noised, some parts of the image can not be deciphered. In order to localize and correct these errors, we propose an approach based on the local Shannon entropy measurement. We first analyze this measure as a function of the block-size. We provide then a full description of our blind error localization and removal process. Experimental results show that the proposed approach, based on local entropy, can be used in practice to correct noisy encrypted images, even with blocks of very small size.
Abbasi, Ali, Wetzels, Jos, Holz, Thorsten, Etalle, Sandro.  2019.  Challenges in Designing Exploit Mitigations for Deeply Embedded Systems. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :31–46.
Memory corruption vulnerabilities have been around for decades and rank among the most prevalent vulnerabilities in embedded systems. Yet this constrained environment poses unique design and implementation challenges that significantly complicate the adoption of common hardening techniques. Combined with the irregular and involved nature of embedded patch management, this results in prolonged vulnerability exposure windows and vulnerabilities that are relatively easy to exploit. Considering the sensitive and critical nature of many embedded systems, this situation merits significant improvement. In this work, we present the first quantitative study of exploit mitigation adoption in 42 embedded operating systems, showing the embedded world to significantly lag behind the general-purpose world. To improve the security of deeply embedded systems, we subsequently present μArmor, an approach to address some of the key gaps identified in our quantitative analysis. μArmor raises the bar for exploitation of embedded memory corruption vulnerabilities, while being adoptable on the short term without incurring prohibitive extra performance or storage costs.
Wang, Shaolei, Zhou, Ying, Li, Yaowei, Guo, Ronghua, Du, Jiawei.  2018.  Quantitative Analysis of Network Address Randomization's Security Effectiveness. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :906—910.

The quantitative security effectiveness analysis is a difficult problem for the research of network address randomization techniques. In this paper, a system model and an attack model are proposed based on general attacks' attack processes and network address randomization's technical principle. Based on the models, the network address randomization's security effectiveness is quantitatively analyzed from the perspective of the attacker's attack time and attack cost in both static network address and network address randomization cases. The results of the analysis show that the security effectiveness of network address randomization is determined by the randomization frequency, the randomization space, the states of hosts in the target network, and the capabilities of the attacker.

Chae, Younghun, Katenka, Natallia, DiPippo, Lisa.  2019.  An Adaptive Threshold Method for Anomaly-based Intrusion Detection Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–4.
Anomaly-based Detection Systems (ADSs) attempt to learn the features of behaviors and events of a system and/or users over a period to build a profile of normal behaviors. There has been a growing interest in ADSs and typically conceived as more powerful systems One of the important factors for ADSs is an ability to distinguish between normal and abnormal behaviors in a given period. However, it is getting complicated due to the dynamic network environment that changes every minute. It is dangerous to distinguish between normal and abnormal behaviors with a fixed threshold in a dynamic environment because it cannot guarantee the threshold is always an indication of normal behaviors. In this paper, we propose an adaptive threshold for a dynamic environment with a trust management scheme for efficiently managing the profiles of normal and abnormal behaviors. Based on the assumption of the statistical analysis-based ADS that normal data instances occur in high probability regions while malicious data instances occur in low probability regions of a stochastic model, we set two adaptive thresholds for normal and abnormal behaviors. The behaviors between the two thresholds are classified as suspicious behaviors, and they are efficiently evaluated with a trust management scheme.
Yu, Dunyi.  2018.  Research on Anomaly Intrusion Detection Technology in Wireless Network. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :540–543.
In order to improve the security of wireless network, an anomaly intrusion detection algorithm based on adaptive time-frequency feature decomposition is proposed. This paper analyzes the types and detection principles of wireless network intrusion detection, it adopts the information statistical analysis method to detect the network intrusion, constructs the traffic statistical analysis model of the network abnormal intrusion, and establishes the network intrusion signal model by combining the signal fitting method. The correlation matching filter is used to filter the network intrusion signal to improve the output signal-to-noise ratio (SNR), the time-frequency analysis method is used to extract the characteristic quantity of the network abnormal intrusion, and the adaptive correlation spectrum analysis method is used to realize the intrusion detection. The simulation results show that this method has high accuracy and strong anti-interference ability, and it can effectively guarantee the network security.
Chaudhary, Anshika, Mittal, Himangi, Arora, Anuja.  2019.  Anomaly Detection using Graph Neural Networks. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :346—350.

Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.

Haoliang, Sun, Dawei, Wang, Ying, Zhang.  2019.  K-Means Clustering Analysis Based on Adaptive Weights for Malicious Code Detection. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :652—656.

Nowadays, a major challenge to network security is malicious codes. However, manual extraction of features is one of the characteristics of traditional detection techniques, which is inefficient. On the other hand, the features of the content and behavior of the malicious codes are easy to change, resulting in more inefficiency of the traditional techniques. In this paper, a K-Means Clustering Analysis is proposed based on Adaptive Weights (AW-MMKM). Identifying malicious codes in the proposed method is based on four types of network behavior that can be extracted from network traffic, including active, fault, network scanning, and page behaviors. The experimental results indicate that the AW-MMKM can detect malicious codes efficiently with higher accuracy.

AL-Mubayedh, Dhoha, AL-Khalis, Mashael, AL-Azman, Ghadeer, AL-Abdali, Manal, Al Fosail, Malak, Nagy, Naya.  2019.  Quantum Cryptography on IBM QX. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Due to the importance of securing electronic transactions, many cryptographic protocols have been employed, that mainly depend on distributed keys between the intended parties. In classical computers, the security of these protocols depends on the mathematical complexity of the encoding functions and on the length of the key. However, the existing classical algorithms 100% breakable with enough computational power, which can be provided by quantum machines. Moving to quantum computation, the field of security shifts into a new area of cryptographic solutions which is now the field of quantum cryptography. The era of quantum computers is at its beginning. There are few practical implementations and evaluations of quantum protocols. Therefore, the paper defines a well-known quantum key distribution protocol which is BB84 then provides a practical implementation of it on IBM QX software. The practical implementations showed that there were differences between BB84 theoretical expected results and the practical implementation results. Due to this, the paper provides a statistical analysis of the experiments by comparing the standard deviation of the results. Using the BB84 protocol the existence of a third-party eavesdropper can be detected. Thus, calculations of the probability of detecting/not detecting a third-party eavesdropping have been provided. These values are again compared to the theoretical expectation. The calculations showed that with the greater number of qubits, the percentage of detecting eavesdropper will be higher.

Takemoto, Shu, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Statistical Power Analysis for IoT Device Oriented Encryption with Glitch Canceller. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :73–76.

Big data which is collected by IoT devices is utilized in various businesses. For security and privacy, some data must be encrypted. IoT devices for encryption require not only to tamper resistance but also low latency and low power. PRINCE is one of the lowest latency cryptography. A glitch canceller reduces power consumption, although it affects tamper resistance. Therefore, this study evaluates the tamper resistance of dedicated hardware with glitch canceller for PRINCE by statistical power analysis and T-test. The evaluation experiments in this study performed on field-programmable gate array (FPGA), and the results revealed the vulnerability of dedicated hardware implementation with glitch canceller.

Sharifzadeh, Mehdi, Aloraini, Mohammed, Schonfeld, Dan.  2019.  Quantized Gaussian Embedding Steganography. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2637–2641.

In this paper, we develop a statistical framework for image steganography in which the cover and stego messages are modeled as multivariate Gaussian random variables. By minimizing the detection error of an optimal detector within the generalized adopted statistical model, we propose a novel Gaussian embedding method. Furthermore, we extend the formulation to cost-based steganography, resulting in a universal embedding scheme that works with embedding costs as well as variance estimators. Experimental results show that the proposed approach avoids embedding in smooth regions and significantly improves the security of the state-of-the-art methods, such as HILL, MiPOD, and S-UNIWARD.

Iriqat, Yousef Mohammad, Ahlan, Abd Rahman, Molok, Nurul Nuha Abdul.  2019.  Information Security Policy Perceived Compliance Among Staff in Palestine Universities: An Empirical Pilot Study. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :580–585.

In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.

Aiken, William, Kim, Hyoungshick, Ryoo, Jungwoo, Rosson, Mary Beth.  2018.  An Implementation and Evaluation of Progressive Authentication Using Multiple Level Pattern Locks. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-6.

This paper presents a possible implementation of progressive authentication using the Android pattern lock. Our key idea is to use one pattern for two access levels to the device; an abridged pattern is used to access generic applications and a second, extended and higher-complexity pattern is used less frequently to access more sensitive applications. We conducted a user study of 89 participants and a consecutive user survey on those participants to investigate the usability of such a pattern scheme. Data from our prototype showed that for unlocking lowsecurity applications the median unlock times for users of the multiple pattern scheme and conventional pattern scheme were 2824 ms and 5589 ms respectively, and the distributions in the two groups differed significantly (Mann-Whitney U test, p-value less than 0.05, two-tailed). From our user survey, we did not find statistically significant differences between the two groups for their qualitative responses regarding usability and security (t-test, p-value greater than 0.05, two-tailed), but the groups did not differ by more than one satisfaction rating at 90% confidence.

Altay, Osman, Ulas, Mustafa.  2018.  Location Determination by Processing Signal Strength of Wi-Fi Routers in the Indoor Environment with Linear Discriminant Classifier. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-4.

Location determination in the indoor areas as well as in open areas is important for many applications. But location determination in the indoor areas is a very difficult process compared to open areas. The Global Positioning System (GPS) signals used for position detection is not effective in the indoor areas. Wi-Fi signals are a widely used method for localization detection in the indoor area. In the indoor areas, localization can be used for many different purposes, such as intelligent home systems, locations of people, locations of products in the depot. In this study, it was tried to determine localization for with the classification method for 4 different areas by using Wi-Fi signal values obtained from different routers for indoor location determination. Linear discriminant analysis (LDA) classification was used for classification. In the test using 10k fold cross-validation, 97.2% accuracy value was calculated.

Carrasco, A., Ropero, J., Clavijo, P. Ruiz de, Benjumea, J., Luque, A..  2018.  A Proposal for a New Way of Classifying Network Security Metrics: Study of the Information Collected through a Honeypot. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :633–634.

Nowadays, honeypots are a key tool to attract attackers and study their activity. They help us in the tasks of evaluating attacker's behaviour, discovering new types of attacks, and collecting information and statistics associated with them. However, the gathered data cannot be directly interpreted, but must be analyzed to obtain useful information. In this paper, we present a SSH honeypot-based system designed to simulate a vulnerable server. Thus, we propose an approach for the classification of metrics from the data collected by the honeypot along 19 months.

Erbay, C., Ergïn, S..  2018.  Random Number Generator Based on Hydrogen Gas Sensor for Security Applications. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :709–712.
Cryptographic applications need high-quality random number generator (RNG) for strong security and privacy measures. This paper presents RNG based on a hydrogen gas sensor that is fabricated by using microfabrication techniques. The proposed approach extracts the thermal noise information as an entropy source from the gas sensor that is non-deterministic during its operation and using hash function SHA-256 as post processing. This non-deterministic noise is then processed to acquire a random number set fulfilling the NIST 800-22 statistical randomness test suite and it demonstrates that a gas sensor based RNG can provide high-quality random numbers. Secure data transfer is possible by having this method directly without any other hardware where hydrogen gas sensor needs to be used such as petrochemical field, fuel cells, and nuclear reactors.
Ali-Tolppa, J., Kocsis, S., Schultz, B., Bodrog, L., Kajo, M..  2018.  SELF-HEALING AND RESILIENCE IN FUTURE 5G COGNITIVE AUTONOMOUS NETWORKS. 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K). :1–8.
In the Self-Organizing Networks (SON) concept, self-healing functions are used to detect, diagnose and correct degraded states in the managed network functions or other resources. Such methods are increasingly important in future network deployments, since ultra-high reliability is one of the key requirements for the future 5G mobile networks, e.g. in critical machine-type communication. In this paper, we discuss the considerations for improving the resiliency of future cognitive autonomous mobile networks. In particular, we present an automated anomaly detection and diagnosis function for SON self-healing based on multi-dimensional statistical methods, case-based reasoning and active learning techniques. Insights from both the human expert and sophisticated machine learning methods are combined in an iterative way. Additionally, we present how a more holistic view on mobile network self-healing can improve its performance.
Obert, J., Chavez, A., Johnson, J..  2018.  Behavioral Based Trust Metrics and the Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1490-1493.

To ensure reliable and predictable service in the electrical grid it is important to gauge the level of trust present within critical components and substations. Although trust throughout a smart grid is temporal and dynamically varies according to measured states, it is possible to accurately formulate communications and service level strategies based on such trust measurements. Utilizing an effective set of machine learning and statistical methods, it is shown that establishment of trust levels between substations using behavioral pattern analysis is possible. It is also shown that the establishment of such trust can facilitate simple secure communications routing between substations.

Grinstein, E., Duong, N. Q. K., Ozerov, A., Pérez, P..  2018.  Audio Style Transfer. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :586–590.
``Style transfer'' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.