Visible to the public Biblio

Filters: Keyword is Power systems  [Clear All Filters]
Li, Mingxuan, Yang, Zhushi, He, Ling, Teng, Yangxin.  2019.  Research on Typical Model of Network Invasion and Attack in Power Industrial Control System. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:2070–2073.
Aiming at the operation characteristics of power industry control system, this paper deeply analyses the attack mechanism and characteristics of power industry control system intrusion. On the basis of classifying and sorting out the attack characteristics of power industrial control system, this paper also attaches importance to break the basic theory and consequential technologies of industrial control network space security, and constructs the network intrusion as well as attack model of power industrial control system to realize the precise characterization of attackers' attack behavior, which provides a theoretical model for the analysis and early warning of attack behavior analysis of power industrial control systems.
Ha, Dinh Truc, Retière, Nicolas, Caputo, Jean-Guy.  2019.  A New Metric to Quantify the Vulnerability of Power Grids. 2019 International Conference on System Science and Engineering (ICSSE). :206—213.
Major blackouts are due to cascading failures in power systems. These failures usually occur at vulnerable links of the network. To identify these, indicators have already been defined using complex network theory. However, most of these indicators only depend on the topology of the grid; they fail to detect the weak links. We introduce a new metric to identify the vulnerable lines, based on the load-flow equations and the grid geometry. Contrary to the topological indicators, ours is built from the electrical equations and considers the location and magnitude of the loads and of the power generators. We apply this new metric to the IEEE 118-bus system and compare its prediction of weak links to the ones given by an industrial software. The agreement is very well and shows that using our indicator a simple examination of the network and its generator and load distribution suffices to find the weak lines.
Zhao, Guowei, Zhao, Rui, Wang, Qiang, Xue, Hui, Luo, Fang.  2019.  Virtual Network Mapping Algorithm for Self-Healing of Distribution Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1442–1445.
This paper focuses on how to provide virtual network (VN) with the survivability of node failure. In the SVNE that responds to node failures, the backup mechanism provided by the VN initial mapping method should be as flexible as possible, so that backup resources can be shared among the VNs, thereby providing survivability support for the most VNs with the least backup overhead, which can improve The utilization of backup resources can also improve the survivability of VN to deal with multi-node failures. For the remapping method of virtual networks, it needs to be higher because it involves both remapping of virtual nodes and remapping of related virtual links. The remapping efficiency, so as to restore the affected VN to a normal state as soon as possible, to avoid affecting the user's business experience. Considering that the SVNE method that actively responds to node failures always has a certain degree of backup resource-specific phenomenon, this section provides a SVNE method that passively responds to node failures. This paper mainly introduces the survivability virtual network initial mapping method based on physical node recoverability in this method.
Guo, Qingrui, Xie, Peng, Li, Feng, Guo, Xuerang, Li, Yutao, Ma, Lin.  2019.  Research on Linkage Model of Network Resource Survey and Vulnerability Detection in Power Information System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1068–1071.
this paper first analyses the new challenges of power information network management, difficulties of the power information network resource survey and vulnerability detection are proposed. Then, a linkage model of network resource survey and vulnerability detection is designed, and the framework of three modules in the model is described, meanwhile the process of network resources survey and vulnerability detection linkage is proposed. Finally, the implementation technologies are given corresponding to the main functions of each module.
Yang, Weiyong, Liu, Wei, Wei, Xingshen, Lv, Xiaoliang, Qi, Yunlong, Sun, Boyan, Liu, Yin.  2019.  Micro-Kernel OS Architecture and its Ecosystem Construction for Ubiquitous Electric Power IoT. 2019 IEEE International Conference on Energy Internet (ICEI). :179–184.

The operating system is extremely important for both "Made in China 2025" and ubiquitous electric power Internet of Things. By investigating of five key requirements for ubiquitous electric power Internet of Things at the OS level (performance, ecosystem, information security, functional security, developer framework), this paper introduces the intelligent NARI microkernel Operating System and its innovative schemes. It is implemented with microkernel architecture based on the trusted computing. Some technologies such as process based fine-grained real-time scheduling algorithm, sigma0 efficient message channel and service process binding in multicore are applied to improve system performance. For better ecological expansion, POSIX standard API is compatible, Linux container, embedded virtualization and intelligent interconnection technology are supported. Native process sandbox and mimicry defense are considered for security mechanism design. Multi-level exception handling and multidimensional partition isolation are adopted to provide High Reliability. Theorem-assisted proof tools based on Isabelle/HOL is used to verify the design and implementation of NARI microkernel OS. Developer framework including tools, kit and specification is discussed when developing both system software and user software on this IoT OS.

Shang, Chengya, Bao, Xianqiang, Fu, Lijun, Xia, Li, Xu, Xinghua, Xu, Chengcheng.  2019.  A Novel Key-Value Based Real-Time Data Management Framework for Ship Integrated Power Cyber-Physical System. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :854–858.
The new generation ship integrated power system (IPS) realizes high level informatization for various physical equipments, and gradually develops to a cyber-physical system (CPS). The future trend is collecting ship big data to achieve data-driven intelligence for IPS. However, traditional relational data management framework becomes inefficient to handle the real-time data processing in ship integrated power cyber-physics system. In order to process the large-scale real-time data that collected from numerous sensors by field bus of IPS devices within acceptable latency, especially for handling the semi-structured and non-structured data. This paper proposes a novel key-value data model based real-time data management framework, which enables batch processing and distributed deployment to acquire time-efficiency as well as system scalable. We implement a real-time data management prototype system based on an open source in-memory key-value store. Finally, the evaluation results from the prototype verify the advantages of novel framework compared with traditional solution.
Wang, Dinghua, Feng, Dongqin.  2018.  Intrusion Detection Model of SCADA Using Graphical Features. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1208–1214.
Supervisory control and data acquisition system is an important part of the country's critical infrastructure, but its inherent network characteristics are vulnerable to attack by intruders. The vulnerability of supervisory control and data acquisition system was analyzed, combining common attacks such as information scanning, response injection, command injection and denial of service in industrial control systems, and proposed an intrusion detection model based on graphical features. The time series of message transmission were visualized, extracting the vertex coordinates and various graphic area features to constitute a new data set, and obtained classification model of intrusion detection through training. An intrusion detection experiment environment was built using tools such as MATLAB and power protocol testers. IEC 60870-5-104 protocol which is widely used in power systems had been taken as an example. The results of tests have good effectiveness.
Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.

Nateghi, S., Shtessel, Y., Barbot, J., Zheng, G., Yu, L..  2018.  Cyber-Attack Reconstruction via Sliding Mode Differentiation and Sparse Recovery Algorithm: Electrical Power Networks Application. 2018 15th International Workshop on Variable Structure Systems (VSS). :285-290.

In this work, the unknown cyber-attacks on cyber-physical systems are reconstructed using sliding mode differentiation techniques in concert with the sparse recovery algorithm, when only several unknown attacks out of a long list of possible attacks are considered non-zero. The approach is applied to a model of the electric power system, and finally, the efficacy of the proposed techniques is illustrated via simulations of a real electric power system.

Hasan, S., Ghafouri, A., Dubey, A., Karsai, G., Koutsoukos, X..  2018.  Vulnerability analysis of power systems based on cyber-attack and defense models. 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.
Culler, M., Davis, K..  2018.  Toward a Sensor Trustworthiness Measure for Grid-Connected IoT-Enabled Smart Cities. 2018 IEEE Green Technologies Conference (GreenTech). :168–171.

Traditional security measures for large-scale critical infrastructure systems have focused on keeping adversaries out of the system. As the Internet of Things (IoT) extends into millions of homes, with tens or hundreds of devices each, the threat landscape is complicated. IoT devices have unknown access capabilities with unknown reach into other systems. This paper presents ongoing work on how techniques in sensor verification and cyber-physical modeling and analysis on bulk power systems can be applied to identify malevolent IoT devices and secure smart and connected communities against the most impactful threats.

Li, Q., Xu, B., Li, S., Liu, Y., Cui, D..  2017.  Reconstruction of measurements in state estimation strategy against cyber attacks for cyber physical systems. 2017 36th Chinese Control Conference (CCC). :7571–7576.

To improve the resilience of state estimation strategy against cyber attacks, the Compressive Sensing (CS) is applied in reconstruction of incomplete measurements for cyber physical systems. First, observability analysis is used to decide the time to run the reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-Singular Value Decomposition (K-SVD). Besides, due to the irregularity of incomplete measurements, sampling matrix is designed as the measurement matrix. Finally, the simulation experiments on 6-bus power system illustrate that the proposed method achieves the incomplete measurements reconstruction perfectly, which is better than the joint dictionary. When only 29% available measurements are left, the proposed method has generality for four kinds of recovery algorithms.

Hinojosa, V., Gonzalez-Longatt, F..  2017.  Stochastic security-constrained generation expansion planning methodology based on a generalized line outage distribution factors. 2017 IEEE Manchester PowerTech. :1–6.

In this study, it is proposed to carry out an efficient formulation in order to figure out the stochastic security-constrained generation capacity expansion planning (SC-GCEP) problem. The main idea is related to directly compute the line outage distribution factors (LODF) which could be applied to model the N - m post-contingency analysis. In addition, the post-contingency power flows are modeled based on the LODF and the partial transmission distribution factors (PTDF). The post-contingency constraints have been reformulated using linear distribution factors (PTDF and LODF) so that both the pre- and post-contingency constraints are modeled simultaneously in the SC-GCEP problem using these factors. In the stochastic formulation, the load uncertainty is incorporated employing a two-stage multi-period framework, and a K - means clustering technique is implemented to decrease the number of load scenarios. The main advantage of this methodology is the feasibility to quickly compute the post-contingency factors especially with multiple-line outages (N - m). This concept would improve the security-constraint analysis modeling quickly the outage of m transmission lines in the stochastic SC-GCEP problem. It is carried out several experiments using two electrical power systems in order to validate the performance of the proposed formulation.

Li, F., Chen, J., Shu, F., Zhang, J., Qing, S., Guo, W..  2017.  Research of Security Risk in Electric Power Information Network. 2017 6th International Conference on Computer Science and Network Technology (ICCSNT). :361–365.

The factors that threaten electric power information network are analyzed. Aiming at the weakness of being unable to provide numerical value of risk, this paper presents the evaluation index system, the evaluation model and method of network security based on multilevel fuzzy comprehensive judgment. The steps and method of security evaluation by the synthesis evaluation model are provided. The results show that this method is effective to evaluate the risk of electric power information network.

Dey, A. K., Gel, Y. R., Poor, H. V..  2017.  Motif-Based Analysis of Power Grid Robustness under Attacks. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1015–1019.

Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.

Lin, Y., Abur, A..  2017.  Identifying security vulnerabilities of weakly detectable network parameter errors. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :295–301.
This paper is concerned about the security vulnerabilities in the implementation of the Congestion Revenue Rights (CRR) markets. Such problems may be due to the weakly detectable network model parameter errors which are commonly found in power systems. CRRs are financial tools for hedging the risk of congestion charges in power markets. The reimbursements received by CRR holders are determined by the congestion patterns and Locational Marginal Prices (LMPs) in the day-ahead markets, which heavily rely on the parameters in the network model. It is recently shown that detection of errors in certain network model parameters may be very difficult. This paper's primary goal is to illustrate the lack of market security due to such vulnerabilities, i.e. CRR market calculations can be manipulated by injecting parameter errors which are not likely to be detected. A case study using the IEEE 14-bus system will illustrate the feasibility of such undetectable manipulations. Several suggestions for preventing such cyber security issues are provided at the end of the paper.
Hong, Q., Jianwei, T., Zheng, T., Wenhui, Q., Chun, L., Xi, L., Hongyu, Z..  2017.  An Information Security Risk Assessment Algorithm Based on Risk Propagation in Energy Internet. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.

Hong, Q., Jianwei, T., Zheng, T., Wenhui, Q., Chun, L., Xi, L., Hongyu, Z..  2017.  An Information Security Risk Assessment Algorithm Based on Risk Propagation in Energy Internet. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.
Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.
Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X., Lang, Y., Jia, Y., Chen, Z..  2017.  GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis. IEEE Transactions on Smart Grid. 8:1406–1416.

Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The prop- sed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.

Ashok, A., Sridhar, S., McKinnon, A. D., Wang, P., Govindarasu, M..  2016.  Testbed-based performance evaluation of Attack Resilient Control for AGC. 2016 Resilience Week (RWS). :125–129.

The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control applications to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this paper we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's PowerCyber testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.

Lu, Y., Sheng, W., Riliang, L., Jin, P..  2017.  Research and Construction of Dynamic Awareness Security Protection Model Based on Security Policy. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :202–207.

In order to ensure the security of electric power supervisory control and data acquisition (SCADA) system, this paper proposes a dynamic awareness security protection model based on security policy, the design idea of which regards safety construction protection as a dynamic analysis process and the security policy should adapt to the network dynamics. According to the current situation of the power SCADA system, the related security technology and the investigation results of system security threat, the paper analyzes the security requirements and puts forward the construction ideas of security protection based on policy protection detection response (P2DR) policy model. The dynamic awareness security protection model proposed in this paper is an effective and useful tool for protecting the security of power-SCADA system.

Ashok, A., Krishnaswamy, S., Govindarasu, M..  2016.  PowerCyber: A remotely accessible testbed for Cyber Physical security of the Smart Grid. 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Cyber Physical Systems (CPS) security testbeds serve as a platform for evaluating and validating novel CPS security tools and technologies, accelerating the transition of state-of-the-art research to industrial practice. The engineering of CPS security testbeds requires significant investments in money, time and modeling efforts to provide a scalable, high-fidelity, real-time attack-defense platform. Therefore, there is a strong need in academia and industry to create remotely accessible testbeds that support a range of use-cases pertaining to CPS security of the grid, including vulnerability assessments, impact analysis, product testing, attack-defense exercises, and operator training. This paper describes the implementation architecture, and capabilities of a remote access and experimental orchestration framework developed for the PowerCyber CPS security testbed at Iowa State University (ISU). The paper then describes several engineering challenges in the development of such remotely accessible testbeds for Smart Grid CPS security experimentation. Finally, the paper provides a brief case study with some screenshots showing a particular use case scenario on the remote access framework.

Park, B., DeMarco, C. L..  2016.  Optimal control via waveform relaxation for power systems cyber-security applications. 2016 IEEE Power and Energy Society General Meeting (PESGM). :1–5.

This paper formulates a power system related optimal control problem, motivated by potential cyber-attacks on grid control systems, and ensuing defensive response to such attacks. The problem is formulated as a standard nonlinear program in the GAMS optimization environment, with system dynamics discretized over a short time horizon providing constraint equations, which are then treated via waveform relaxation. Selection of objective function and additional decision variables is explored first for identifying grid vulnerability to cyber-attacks that act by modifying feedback control system parameters. The resulting decisions for the attacker are then fixed, and the optimization problem is modified with a new objective function and decision variables, to explore a defender's possible response to such attacks.

Guo, Q., Fan, J., Li, N..  2015.  The achieve of power manager application honey-pot based on sandbox. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2523–2527.

Honeypot is a common method of attack capture, can maximize the reduction of cyber-attacks. However, its limited application layer simulation makes it impossible to use effectively in power system. Through research on sandboxing technology, this article implements the simulated power manager applications by packaging real power manager applications, in order to expand the honeypot applied range.