Visible to the public Biblio

Filters: Keyword is Circuit faults  [Clear All Filters]
2021-06-28
Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
2021-05-25
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
2021-03-16
Li, M., Wang, F., Gupta, S..  2020.  Data-driven fault model development for superconducting logic. 2020 IEEE International Test Conference (ITC). :1—5.

Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.

2021-01-20
Wang, H., Yang, J., Wang, X., Li, F., Liu, W., Liang, H..  2020.  Feature Fingerprint Extraction and Abnormity Diagnosis Method of the Vibration on the GIS. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1—4.

Mechanical faults of Gas Insulated Switchgear (GIS) often occurred, which may cause serious losses. Detecting vibration signal was effective for condition monitoring and fault diagnosis of GIS. The vibration characteristic of GIS in service was detected and researched based on a developed testing system in this paper, and feature fingerprint extraction method was proposed to evaluate vibration characteristics and diagnose mechanical defects. Through analyzing the spectrum of the vibration signal, we could see that vibration frequency of operating GIS was about 100Hz under normal condition. By means of the wavelet transformation, the vibration fingerprint was extracted for the diagnosis of mechanical vibration. The mechanical vibration characteristic of GIS including circuit breaker and arrester in service was detected, we could see that the frequency distribution of abnormal vibration signal was wider, it contained a lot of high harmonic components besides the 100Hz component, and the vibration acoustic fingerprint was totally different from the normal ones, that is, by comparing the frequency spectra and vibration fingerprint, the mechanical faults of GIS could be found effectively.

2020-11-30
Gerdroodbari, Y. Z., Davarpanah, M., Farhangi, S..  2018.  Remanent Flux Negative Effects on Transformer Diagnostic Test Results and a Novel Approach for Its Elimination. IEEE Transactions on Power Delivery. 33:2938–2945.
Influence of remanent flux on hysteresis curve of the transformer core is addressed in this paper. In addition, its significant negative effect on transformer diagnostic tests is quantified based on experimental studies. Furthermore, a novel approach is proposed to efficiently and quickly eliminate the remanent flux. This approach is evaluated based on simulation studies on a 230/63-kV power transformer. Meanwhile, experimental studies are performed on both 0.2/0.2 and 20/0.4 kV transformers. These studies reveal that the approach not only is well able to eliminate the remanent flux, but also it has various advantages over the commonly used method. In addition, this approach is equally applicable for various power, distribution, and instrument transformer types.
2020-10-06
Drozd, Oleksandr, Kharchenko, Vyacheslav, Rucinski, Andrzej, Kochanski, Thaddeus, Garbos, Raymond, Maevsky, Dmitry.  2019.  Development of Models in Resilient Computing. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :1—6.

The article analyzes the concept of "Resilience" in relation to the development of computing. The strategy for reacting to perturbations in this process can be based either on "harsh Resistance" or "smarter Elasticity." Our "Models" are descriptive in defining the path of evolutionary development as structuring under the perturbations of the natural order and enable the analysis of the relationship among models, structures and factors of evolution. Among those, two features are critical: parallelism and "fuzziness", which to a large extent determine the rate of change of computing development, especially in critical applications. Both reversible and irreversible development processes related to elastic and resistant methods of problem solving are discussed. The sources of perturbations are located in vicinity of the resource boundaries, related to growing problem size with progress combined with the lack of computational "checkability" of resources i.e. data with inadequate models, methodologies and means. As a case study, the problem of hidden faults caused by the growth, the deficit of resources, and the checkability of digital circuits in critical applications is analyzed.

2020-09-18
Ameli, Amir, Hooshyar, Ali, El-Saadany, Ehab F..  2019.  Development of a Cyber-Resilient Line Current Differential Relay. IEEE Transactions on Industrial Informatics. 15:305—318.
The application of line current differential relays (LCDRs) to protect transmission lines has recently proliferated. However, the reliance of LCDRs on digital communication channels has raised growing cyber-security concerns. This paper investigates the impacts of false data injection attacks (FDIAs) on the performance of LCDRs. It also develops coordinated attacks that involve multiple components, including LCDRs, and can cause false line tripping. Additionally, this paper proposes a technique for detecting FDIAs against LCDRs and differentiating them from actual faults in two-terminal lines. In this method, when an LCDR detects a fault, instead of immediately tripping the line, it calculates and measures the superimposed voltage at its local terminal, using the proposed positive-sequence (PS) and negative-sequence (NS) submodules. To calculate this voltage, the LCDR models the protected line in detail and replaces the rest of the system with a Thevenin equivalent that produces accurate responses at the line terminals. Afterwards, remote current measurement is utilized by the PS and NS submodules to compute each sequence's superimposed voltage. A difference between the calculated and the measured superimposed voltages in any sequence reveals that the remote current measurements are not authentic. Thus, the LCDR's trip command is blocked. The effectiveness of the proposed method is corroborated using simulation results for the IEEE 39-bus test system. The performance of the proposed method is also tested using an OPAL real-time simulator.
2020-06-26
Bedoui, Mouna, Bouallegue, Belgacem, Hamdi, Belgacem, Machhout, Mohsen.  2019.  An Efficient Fault Detection Method for Elliptic Curve Scalar Multiplication Montgomery Algorithm. 2019 IEEE International Conference on Design Test of Integrated Micro Nano-Systems (DTS). :1—5.

Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.

2020-05-22
Ranjan, G S K, Kumar Verma, Amar, Radhika, Sudha.  2019.  K-Nearest Neighbors and Grid Search CV Based Real Time Fault Monitoring System for Industries. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1—5.
Fault detection in a machine at earlier stage can prevent severe damage and loss to the industries. Fault detection techniques are broadly classified into three categories; signature extraction-based, model-based and knowledge-based approach. Model-based techniques are efficient for raising an alarm signal if there is any fault in the machine. This paper focuses on one such model based-technique to identify the internal faults of induction machine. The model developed is deployed in the end to make it feasible to use in real time. K-Nearest Neighbors (KNN) and grid search cross validation (CV) have been used to train and optimize the model to give the best results. The advantage of proposed algorithm is the accuracy in prediction which has been seen to be 80%. Finally, a user friendly interface has been built using Flask, a python web framework.
2020-05-08
Yang, Zai-xin, Gao, Chen, Wang, Yun-min.  2018.  Security and Stability Control System Simulation Using RTDS. 2018 13th World Congress on Intelligent Control and Automation (WCICA). :1737—1740.
Analyzing performance of security and stability control system is of great importance for the safe and stable operation of the power grid. Digital dynamic experimental model is built by real time digital simulation (RTDS) in order to research security and stability system of Inner Mongolia in northern 500kV transmission channel. The whole process is closed-loop dynamic real-time simulation. According to power grid network testing technology standard, all kinds of stability control devices need to be tested in a comprehensive system. Focus on the following items: security and stability control strategy, tripping criterion as well as power system low frequency oscillations. Results of the trial indicated that the simulation test platform based on RTDS have the ability of detecting the safe and stable device. It can reflect the action behavior and control characteristics of the safe and stable device accurately. The device can be used in the case of low frequency oscillation of the system.
2020-03-09
Portolan, Michele, Savino, Alessandro, Leveugle, Regis, Di Carlo, Stefano, Bosio, Alberto, Di Natale, Giorgio.  2019.  Alternatives to Fault Injections for Early Safety/Security Evaluations. 2019 IEEE European Test Symposium (ETS). :1–10.
Functional Safety standards like ISO 26262 require a detailed analysis of the dependability of components subjected to perturbations. Radiation testing or even much more abstract RTL fault injection campaigns are costly and complex to set up especially for SoCs and Cyber Physical Systems (CPSs) comprising intertwined hardware and software. Moreover, some approaches are only applicable at the very end of the development cycle, making potential iterations difficult when market pressure and cost reduction are paramount. In this tutorial, we present a summary of classical state-of-the-art approaches, then alternative approaches for the dependability analysis that can give an early yet accurate estimation of the safety or security characteristics of HW-SW systems. Designers can rely on these tools to identify issues in their design to be addressed by protection mechanisms, ensuring that system dependability constraints are met with limited risk when subjected later to usual fault injections and to e.g., radiation testing or laser attacks for certification.
2020-02-26
Abraham, Jacob A..  2019.  Resiliency Demands on Next Generation Critical Embedded Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :135–138.

Emerging intelligent systems have stringent constraints including cost and power consumption. When they are used in critical applications, resiliency becomes another key requirement. Much research into techniques for fault tolerance and dependability has been successfully applied to highly critical systems, such as those used in space, where cost is not an overriding constraint. Further, most resiliency techniques were focused on dealing with failures in the hardware and bugs in the software. The next generation of systems used in critical applications will also have to be tolerant to test escapes after manufacturing, soft errors and transients in the electronics, hardware bugs, hardware and software Trojans and viruses, as well as intrusions and other security attacks during operation. This paper will assess the impact of these threats on the results produced by a critical system, and proposed solutions to each of them. It is argued that run-time checks at the application-level are necessary to deal with errors in the results.

Danger, Jean-Luc, Fribourg, Laurent, Kühne, Ulrich, Naceur, Maha.  2019.  LAOCOÖN: A Run-Time Monitoring and Verification Approach for Hardware Trojan Detection. 2019 22nd Euromicro Conference on Digital System Design (DSD). :269–276.

Hardware Trojan Horses and active fault attacks are a threat to the safety and security of electronic systems. By such manipulations, an attacker can extract sensitive information or disturb the functionality of a device. Therefore, several protections against malicious inclusions have been devised in recent years. A prominent technique to detect abnormal behavior in the field is run-time verification. It relies on dedicated monitoring circuits and on verification rules generated from a set of temporal properties. An important question when dealing with such protections is the effectiveness of the protection against unknown attacks. In this paper, we present a methodology based on automatic generation of monitoring and formal verification techniques that can be used to validate and analyze the quality of a set of temporal properties when used as protection against generic attackers of variable strengths.

2020-02-24
Altun, Hüseyin, Sünter, Sedat, Aydoğmuş, Ömür.  2019.  Modeling and Simulation of Magnetizing Inrush Current in A Single-Phase Transformer. 2019 4th International Conference on Power Electronics and their Applications (ICPEA). :1–6.
In this paper, a transformer model has been developed. The model is based on the equivalent electrical circuit used in transient simulation studies which considers the non-linearity of the iron core. The non-linear ferromagnetic behavior of the iron core was obtained by using the Jiles-Atherton hysteresis model. The magnetizing inrush current of a core type single-phase transformer was analyzed under four different energization conditions. The primary winding of the transformer was connected to the supply at various instants while there was either some level of remanent flux or no remanent flux in the iron core. Corresponding simulation results are presented and discussed.
Kanokbannakorn, W., Penthong, T..  2019.  Improvement of a Current Transformer Model based on the Jiles-Atherton Theory. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). :495–499.
An improved current transformer model (CT) developed in DIgSILENT™ is presented in this paper. The hysteresis characteristics of magnetic material described by Jiles-Atheron theory are included. The results show that model can represent the saturation and remanence characteristics of CT core accurately. The model accuracy is verified by comparing the simulation results with PSCAD/EMTDC™.
2020-02-17
Liu, Xiaobao, Wu, Qinfang, Sun, Jinhua, Xu, Xia, Wen, Yifan.  2019.  Research on Self-Healing Technology for Faults of Intelligent Distribution Network Communication System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1404–1408.
The intelligent power communication network is closely connected with the power system, and carries the data transmission and intelligent decision in a series of key services in the power system, which is an important guarantee for the smart power service. The self-healing control (SHC) of the distribution network monitors the data of each device and node in the distribution network in real time, simulates and analyzes the data, and predicts the hidden dangers in the normal operation of the distribution network. Control, control strategies such as correcting recovery and troubleshooting when abnormal or fault conditions occur, reducing human intervention, enabling the distribution network to change from abnormal operating state to normal operating state in time, preventing event expansion and reducing the impact of faults on the grid and users.
2020-02-10
Muka, Romina, Haugli, Fredrik Bakkevig, Vefsnmo, Hanne, Heegaard, Poul E..  2019.  Information Inconsistencies in Smart Distribution Grids under Different Failure Causes modelled by Stochastic Activity Networks. 2019 AEIT International Annual Conference (AEIT). :1–6.
The ongoing digitalization of the power distribution grid will improve the operational support and automation which is believed to increase the system reliability. However, in an integrated and interdependent cyber-physical system, new threats appear which must be understood and dealt with. Of particular concern, in this paper, is the causes of an inconsistent view between the physical system (here power grid) and the Information and Communication Technology (ICT) system (here Distribution Management System). In this paper we align the taxonomy used in International Electrotechnical Commission (power eng.) and International Federation for Information Processing (ICT community), define a metric for inconsistencies, and present a modelling approach using Stochastic Activity Networks to assess the consequences of inconsistencies. The feasibility of the approach is demonstrated in a simple use case.
2020-01-20
Gay, Maël, Paxian, Tobias, Upadhyaya, Devanshi, Becker, Bernd, Polian, Ilia.  2019.  Hardware-Oriented Algebraic Fault Attack Framework with Multiple Fault Injection Support. 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). :25–32.

The evaluation of fault attacks on security-critical hardware implementations of cryptographic primitives is an important concern. In such regards, we have created a framework for automated construction of fault attacks on hardware realization of ciphers. The framework can be used to quickly evaluate any cipher implementations, including any optimisations. It takes the circuit description of the cipher and the fault model as input. The output of the framework is a set of algebraic equations, such as conjunctive normal form (CNF) clauses, which is then fed to a SAT solver. We consider both attacking an actual implementation of a cipher on an field-programmable gate array (FPGA) platform using a fault injector and the evaluation of an early design of the cipher using idealized fault models. We report the successful application of our hardware-oriented framework to a collection of ciphers, including the advanced encryption standard (AES), and the lightweight block ciphers LED and PRESENT. The corresponding results and a discussion of the impact to different fault models on our framework are shown. Moreover, we report significant improvements compared to similar frameworks, such as speedups or more advanced features. Our framework is the first algebraic fault attack (AFA) tool to evaluate the state-of-the art cipher LED-64, PRESENT and full-scale AES using only hardware-oriented structural cipher descriptions.

2020-01-02
Shabanov, Boris, Sotnikov, Alexander, Palyukh, Boris, Vetrov, Alexander, Alexandrova, Darya.  2019.  Expert System for Managing Policy of Technological Security in Uncertainty Conditions: Architectural, Algorithmic, and Computing Aspects. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1716–1721.

The paper discusses the architectural, algorithmic and computing aspects of creating and operating a class of expert system for managing technological safety of an enterprise, in conditions of a large flow of diagnostic variables. The algorithm for finding a faulty technological chain uses expert information, formed as a set of evidence on the influence of diagnostic variables on the correctness of the technological process. Using the Dempster-Schafer trust function allows determining the overall probability measure on subsets of faulty process chains. To combine different evidence, the orthogonal sums of the base probabilities determined for each evidence are calculated. The procedure described above is converted into the rules of the knowledge base production. The description of the developed prototype of the expert system, its architecture, algorithmic and software is given. The functionality of the expert system and configuration tools for a specific type of production are under discussion.

2019-03-15
Martin, H., Entrena, L., Dupuis, S., Natale, G. Di.  2018.  A Novel Use of Approximate Circuits to Thwart Hardware Trojan Insertion and Provide Obfuscation. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). :41-42.

Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.

2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

Zhang, F., Dong, X., Zhao, X., Wang, Y., Qureshi, S., Zhang, Y., Lou, X., Tang, Y..  2018.  Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :335-343.
This paper proposed an advanced round modification fault analysis (RMFA) at the theoretical level on AEGIS-128, which is one of seven finalists in CAESAR competition. First, we clarify our assumptions and simplifications on the attack model, focusing on the encryption security. Then, we emphasize the difficulty of applying vanilla RMFA to AEGIS-128 in the practical case. Finally we demonstrate our advanced fault analysis on AEGIS-128 using machine-solver based algebraic techniques. Our enhancement can be used to conquer the practical scenario which is difficult for vanilla RMFA. Simulation results show that when the fault is injected to the initialization phase and the number of rounds is reduced to one, two samples of injections can extract the whole 128 key bits within less than two hours. This work can also be extended to other versions such as AEGIS-256.
2019-01-16
Zhang, R., Yang, G., Wang, Y..  2018.  Propagation Characteristics of Acoustic Emission Signals in Multi Coupling Interface of the Engine. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :254–258.
The engine is a significant and dynamic component of the aircraft. Because of the complicated structure and severe operating environment, the fault detection of the engine has always been the key and difficult issue in the field of reliability. Based on an engine and the acoustic emission technology, we propose a method of identifying fault types and determining different components in the engine by constructing the attenuation coefficient. There are several common faults of engines, and three different types of fault sources are generated experimentally in this work. Then the fault signal of the above fault sources propagating in different engine components are obtained. Finally, the acoustic emission characteristics of the fault signal are extracted and judged by the attenuation coefficient. The work effectively identifies different types of faults and studies the effects of different structural components on the propagation of fault acoustic emission signals, which provides a method for the use of acoustic emission technology to identify the faults types of the engine and to study the propagation characteristics of AE signals on the engine.*
2018-03-05
Khalil, K., Eldash, O., Bayoumi, M..  2017.  Self-Healing Router Architecture for Reliable Network-on-Chips. 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :330–333.

NoCs are a well established research topic and several Implementations have been proposed for Self-healing. Self-healing refers to the ability of a system to detect faults or failures and fix them through healing or repairing. The main problems in current self-healing approaches are area overhead and scalability for complex structure since they are based on redundancy and spare blocks. Also, faulty router can isolate PE from other router nodes which can reduce the overall performance of the system. This paper presents a self-healing for a router to avoid denied fault PE function and isolation PE from other nodes. In the proposed design, the neighbor routers receive signal from a faulty router which keeps them to send the data packet which has only faulted router destination to a faulty router. Control unite turns on switches to connect four input ports to local ports successively to send coming packets to PE. The reliability of the proposed technique is studied and compared to conventional system with different failure rates. This approach is capable of healing 50% of the router. The area overhead is 14% for the proposed approach which is much lower compared to other approaches using redundancy.

2018-02-21
Su, G., Bai, G..  2017.  The undetectable clock cycle sensitive hardware trojan. 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). :1–2.

We have proposed a method of designing embedded clock-cycle-sensitive Hardware Trojans (HTs) to manipulate finite state machine (FSM). By using pipeline to choose and customize critical path, the Trojans can facilitate a series of attack and need no redundant circuits. One cannot detect any malicious architecture through logic analysis because the proposed circuitry is the part of FSM. Furthermore, this kind of HTs alerts the trusted systems designers to the importance of clock tree structure. The attackers may utilize modified clock to bypass certain security model or change the circuit behavior.