Visible to the public Biblio

Found 629 results

Filters: Keyword is feature extraction  [Clear All Filters]
2021-11-08
Bosaeed, Sahar, Katib, Iyad, Mehmood, Rashid.  2020.  A Fog-Augmented Machine Learning based SMS Spam Detection and Classification System. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :325–330.
Smart cities and societies are driving unprecedented technological and socioeconomic growth in everyday life albeit making us increasingly vulnerable to infinitely and incomprehensibly diverse threats. Short Message Service (SMS) spam is one such threat that can affect mobile security by propagating malware on mobile devices. A security breach could also cause a mobile device to send spam messages. Many works have focused on classifying incoming SMS messages. This paper proposes a tool to detect spam from outgoing SMS messages, although the work can be applied to both incoming and outgoing SMS messages. Specifically, we develop a system that comprises multiple machine learning (ML) based classifiers built by us using three classification methods – Naïve Bayes (NB), Support Vector Machine (SVM), and Naïve Bayes Multinomial (NBM)- and five preprocessing and feature extraction methods. The system is built to allow its execution in cloud, fog or edge layers, and is evaluated using 15 datasets built by 4 widely-used public SMS datasets. The system detects spam SMSs and gives recommendations on the spam filters and classifiers to be used based on user preferences including classification accuracy, True Negatives (TN), and computational resource requirements.
Brown, Brandon, Richardson, Alexicia, Smith, Marcellus, Dozier, Gerry, King, Michael C..  2020.  The Adversarial UFP/UFN Attack: A New Threat to ML-based Fake News Detection Systems? 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1523–1527.
In this paper, we propose two new attacks: the Adversarial Universal False Positive (UFP) Attack and the Adversarial Universal False Negative (UFN) Attack. The objective of this research is to introduce a new class of attack using only feature vector information. The results show the potential weaknesses of five machine learning (ML) classifiers. These classifiers include k-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forrest (RF), a Support Vector Machine (SVM) with a Radial Basis Function (RBF) Kernel, and XGBoost (XGB).
Chang, Sang-Yoon, Park, Younghee, Kengalahalli, Nikhil Vijayakumar, Zhou, Xiaobo.  2020.  Query-Crafting DoS Threats Against Internet DNS. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Domain name system (DNS) resolves the IP addresses of domain names and is critical for IP networking. Recent denial-of-service (DoS) attacks on Internet targeted the DNS system (e.g., Dyn), which has the cascading effect of denying the availability of the services and applications relying on the targeted DNS. In view of these attacks, we investigate the DoS on DNS system and introduce the query-crafting threats where the attacker controls the DNS query payload (the domain name) to maximize the threat impact per query (increasing the communications between the DNS servers and the threat time duration), which is orthogonal to other DoS approaches to increase the attack impact such as flooding and DNS amplification. We model the DNS system using a state diagram and comprehensively analyze the threat space, identifying the threat vectors which include not only the random/invalid domains but also those using the domain name structure to combine valid strings and random strings. Query-crafting DoS threats generate new domain-name payloads for each query and force increased complexity in the DNS query resolution. We test the query-crafting DoS threats by taking empirical measurements on the Internet and show that they amplify the DoS impact on the DNS system (recursive resolver) by involving more communications and taking greater time duration. To defend against such DoS or DDoS threats, we identify the relevant detection features specific to query-crafting threats and evaluate the defense using our prototype in CloudLab.
Ma, Zhongrui, Yuanyuan, Huang, Lu, Jiazhong.  2020.  Trojan Traffic Detection Based on Machine Learning. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :157–160.
At present, most Trojan detection methods are based on the features of host and code. Such methods have certain limitations and lag. This paper analyzes the network behavior features and network traffic of several typical Trojans such as Zeus and Weasel, and proposes a Trojan traffic detection algorithm based on machine learning. First, model different machine learning algorithms and use Random Forest algorithm to extract features for Trojan behavior and communication features. Then identify and detect Trojans' traffic. The accuracy is as high as 95.1%. Comparing the detection of different machine learning algorithms, experiments show that our algorithm has higher accuracy, which is helpful and useful for identifying Trojan.
2021-10-04
Alsoghyer, Samah, Almomani, Iman.  2020.  On the Effectiveness of Application Permissions for Android Ransomware Detection. 2020 6th Conference on Data Science and Machine Learning Applications (CDMA). :94–99.
Ransomware attack is posting a serious threat against Android devices and stored data that could be locked or/and encrypted by such attack. Existing solutions attempt to detect and prevent such attack by studying different features and applying various analysis mechanisms including static, dynamic or both. In this paper, recent ransomware detection solutions were investigated and compared. Moreover, a deep analysis of android permissions was conducted to identify significant android permissions that can discriminate ransomware with high accuracy before harming users' devices. Consequently, based on the outcome of this analysis, a permissions-based ransomware detection system is proposed. Different classifiers were tested to build the prediction model of this detection system. After the evaluation of the ransomware detection service, the results revealed high detection rate that reached 96.9%. Additionally, the newly permission-based android dataset constructed in this research will be made available to researchers and developers for future work.
Song, Fuyuan, Qin, Zheng, Zhang, Jixin, Liu, Dongxiao, Liang, Jinwen, Shen, Xuemin Sherman.  2020.  Efficient and Privacy-preserving Outsourced Image Retrieval in Public Clouds. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
With the proliferation of cloud services, cloud-based image retrieval services enable large-scale image outsourcing and ubiquitous image searching. While enjoying the benefits of the cloud-based image retrieval services, critical privacy concerns may arise in such services since they may contain sensitive personal information. In this paper, we propose an efficient and Privacy-Preserving Image Retrieval scheme with Key Switching Technique (PPIRS). PPIRS utilizes the inner product encryption for measuring Euclidean distances between image feature vectors and query vectors in a privacy-preserving manner. Due to the high dimension of the image feature vectors and the large scale of the image databases, traditional secure Euclidean distance comparison methods provide insufficient search efficiency. To prune the search space of image retrieval, PPIRS tailors key switching technique (KST) for reducing the dimension of the encrypted image feature vectors and further achieves low communication overhead. Meanwhile, by introducing locality sensitive hashing (LSH), PPIRS builds efficient searchable indexes for image retrieval by organizing similar images into a bucket. Security analysis shows that the privacy of both outsourced images and queries are guaranteed. Extensive experiments on a real-world dataset demonstrate that PPIRS achieves efficient image retrieval in terms of computational cost.
2021-09-30
Hou, Qilin, Wang, Jinglin, Shen, Yong.  2020.  Multiple Sensors Fault Diagnosis for Rolling Bearing Based on Variational Mode Decomposition and Convolutional Neural Networks. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). :450–455.
The reliability of mechanical equipment is very important for the security operation of large-scale equipment. This paper presents a rolling bearing fault diagnosis method based on Variational Mode Decomposition (VMD) and Convolutional Neural Network (CNN). This proposed method includes using VMD and CNN to extend multi-sensor data, extracting detailed features and achieve more robust sensor fusion. Representative features can be extracted automatically from the raw signals. The proposed method can extract features directly from data without prior knowledge. The effectiveness of this method is verified on Case Western Reserve University (CWRU) dataset. Compared with one sensor and traditional approaches using manual feature extraction, the results show the superior diagnosis performance of the proposed method. Because of the end-to-end feature learning ability, this method can be extended to other kinds of sensor mechanical fault diagnosis.
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.  2020.  BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
Manning, Derek, Li, Peilong, Wu, Xiaoban, Luo, Yan, Zhang, Tong, Li, Weigang.  2020.  ACETA: Accelerating Encrypted Traffic Analytics on Network Edge. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Applying machine learning techniques to detect malicious encrypted network traffic has become a challenging research topic. Traditional approaches based on studying network patterns fail to operate on encrypted data, especially without compromising the integrity of encryption. In addition, the requirement of rendering network-wide intelligent protection in a timely manner further exacerbates the problem. In this paper, we propose to leverage ×86 multicore platforms provisioned at enterprises' network edge with the software accelerators to design an encrypted traffic analytics (ETA) system with accelerated speed. Specifically, we explore a suite of data features and machine learning models with an open dataset. Then we show that by using Intel DAAL and OpenVINO libraries in model training and inference, we are able to reduce the training and inference time by a maximum order of 31× and 46× respectively while retaining the model accuracy.
2021-09-21
Lee, Yen-Ting, Ban, Tao, Wan, Tzu-Ling, Cheng, Shin-Ming, Isawa, Ryoichi, Takahashi, Takeshi, Inoue, Daisuke.  2020.  Cross Platform IoT-Malware Family Classification Based on Printable Strings. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :775–784.
In this era of rapid network development, Internet of Things (IoT) security considerations receive a lot of attention from both the research and commercial sectors. With limited computation resource, unfriendly interface, and poor software implementation, legacy IoT devices are vulnerable to many infamous mal ware attacks. Moreover, the heterogeneity of IoT platforms and the diversity of IoT malware make the detection and classification of IoT malware even more challenging. In this paper, we propose to use printable strings as an easy-to-get but effective cross-platform feature to identify IoT malware on different IoT platforms. The discriminating capability of these strings are verified using a set of machine learning algorithms on malware family classification across different platforms. The proposed scheme shows a 99% accuracy on a large scale IoT malware dataset consisted of 120K executable fils in executable and linkable format when the training and test are done on the same platform. Meanwhile, it also achieves a 96% accuracy when training is carried out on a few popular IoT platforms but test is done on different platforms. Efficient malware prevention and mitigation solutions can be enabled based on the proposed method to prevent and mitigate IoT malware damages across different platforms.
Khan, Mamoona, Baig, Duaa, Khan, Usman Shahid, Karim, Ahmad.  2020.  Malware Classification Framework Using Convolutional Neural Network. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Cyber-security is facing a huge threat from malware and malware mass production due to its mutation factors. Classification of malware by their features is necessary for the security of information technology (IT) society. To provide security from malware, deep neural networks (DNN) can offer a superior solution for the detection and categorization of malware samples by using image classification techniques. To strengthen our ideology of malware classification through image recognition, we have experimented by comparing two perspectives of malware classification. The first perspective implements dense neural networks on binary files and the other applies deep layered convolutional neural network on malware images. The proposed model is trained to a set of malware samples, which are further distributed into 9 different families. The dataset of malware samples which is used in this paper is provided by Microsoft for Microsoft Malware Classification Challenge in 2015. The proposed model shows an accuracy of 97.80% on the provided dataset. By using the proposed model optimum classifications results can be attained.
Chen, Chin-Wei, Su, Ching-Hung, Lee, Kun-Wei, Bair, Ping-Hao.  2020.  Malware Family Classification Using Active Learning by Learning. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :590–595.
In the past few years, the malware industry has been thriving. Malware variants among the same malware family shared similar behavioural patterns or signatures reflecting their purpose. We propose an approach that combines support vector machine (SVM) classifiers and active learning by learning (ALBL) techniques to deal with insufficient labeled data in terms of the malware classification tasks. The proposed approach is evaluated with the malware family dataset from Microsoft Malware Classification Challenge (BIG 2015) on Kaggle. The results show that ALBL techniques can effectively boost the performance of our machine learning models and improve the quality of labeled samples.
Lin, Kuang-Yao, Huang, Wei-Ren.  2020.  Using Federated Learning on Malware Classification. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :585–589.
In recent years, everything has been more and more systematic, and it would generate many cyber security issues. One of the most important of these is the malware. Modern malware has switched to a high-growth phase. According to the AV-TEST Institute showed that there are over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA) be registered every day. This threat was presented and discussed in the present paper. In addition, we also considered data privacy by using federated learning. Feature extraction can be performed based on malware. The proposed method achieves very high accuracy ($\approx$0.9167) on the dataset provided by VirusTotal.
Snow, Elijah, Alam, Mahbubul, Glandon, Alexander, Iftekharuddin, Khan.  2020.  End-to-End Multimodel Deep Learning for Malware Classification. 2020 International Joint Conference on Neural Networks (IJCNN). :1–7.
Malicious software (malware) is designed to cause unwanted or destructive effects on computers. Since modern society is dependent on computers to function, malware has the potential to do untold damage. Therefore, developing techniques to effectively combat malware is critical. With the rise in popularity of polymorphic malware, conventional anti-malware techniques fail to keep up with the rate of emergence of new malware. This poses a major challenge towards developing an efficient and robust malware detection technique. One approach to overcoming this challenge is to classify new malware among families of known malware. Several machine learning methods have been proposed for solving the malware classification problem. However, these techniques rely on hand-engineered features extracted from malware data which may not be effective for classifying new malware. Deep learning models have shown paramount success for solving various classification tasks such as image and text classification. Recent deep learning techniques are capable of extracting features directly from the input data. Consequently, this paper proposes an end-to-end deep learning framework for multimodels (henceforth, multimodel learning) to solve the challenging malware classification problem. The proposed model utilizes three different deep neural network architectures to jointly learn meaningful features from different attributes of the malware data. End-to-end learning optimizes all processing steps simultaneously, which improves model accuracy and generalizability. The performance of the model is tested with the widely used and publicly available Microsoft Malware Challenge Dataset and is compared with the state-of-the-art deep learning-based malware classification pipeline. Our results suggest that the proposed model achieves comparable performance to the state-of-the-art methods while offering faster training using end-to-end multimodel learning.
Brezinski, Kenneth, Ferens, Ken.  2020.  Complexity-Based Convolutional Neural Network for Malware Classification. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1–9.
Malware classification remains at the forefront of ongoing research as the prevalence of metamorphic malware introduces new challenges to anti-virus vendors and firms alike. One approach to malware classification is Static Analysis - a form of analysis which does not require malware to be executed before classification can be performed. For this reason, a lightweight classifier based on the features of a malware binary is preferred, with relatively low computational overhead. In this work a modified convolutional neural network (CNN) architecture was deployed which integrated a complexity-based evaluation based on box-counting. This was implemented by setting up max-pooling layers in parallel, and then extracting the fractal dimension using a polyscalar relationship based on the resolution of the measurement scale and the number of elements of a malware image covered in the measurement under consideration. To test the robustness and efficacy of our approach we trained and tested on over 9300 malware binaries from 25 unique malware families. This work was compared to other award-winning image recognition models, and results showed categorical accuracy in excess of 96.54%.
Ghanem, Sahar M., Aldeen, Donia Naief Saad.  2020.  AltCC: Alternating Clustering and Classification for Batch Analysis of Malware Behavior. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
The most common goal of malware analysis is to determine if a given binary is malware or benign. Another objective is similarity analysis of malware binaries to understand how new samples differ from known ones. Similarity analysis helps to analyze the malware with respect to those already analyzed and guides the discovery of novel aspects that should be analyzed more in depth. In this work, we are concerned with similarities and differences detection of malware binaries. Thousands of malware are created every day and machine learning is an indispensable tool for its analysis. Previous work has studied clustering and classification as competing paradigms. However, in this work, a malware similarity analysis technique (AltCC) is proposed that alternates the use of clustering and classification. In addition it assumes the malware are not available all at once but processed in batches. Initially, clustering is applied to the first batch to group similar binaries into novel malware classes. Then, the discovered classes are used to train a classifier. For the following batches, the classifier is used to decide if a new binary classifies to a known class or otherwise unclassified. The unclassified binaries are clustered and the process repeats. Malware clustering (i.e. labeling) may entail further human expert analysis but dramatically reduces the effort. The effectiveness of AltCC is studied using a dataset of 29,661 malware binaries that represent malware received in six consecutive days/batches. When KMeans is used to label the dataset all at once and its labeling is compared to AltCC's, the adjusted-rand-index scores 0.71.
Yan, Fan, Liu, Jia, Gu, Liang, Chen, Zelong.  2020.  A Semi-Supervised Learning Scheme to Detect Unknown DGA Domain Names Based on Graph Analysis. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1578–1583.
A large amount of malware families use the domain generation algorithms (DGA) to randomly generate a large amount of domain names. It is a good way to bypass conventional blacklists of domain names, because we cannot predict which of the randomly generated domain names are selected for command and control (C&C) communications. An effective approach for detecting known DGA families is to investigate the malware with reverse engineering to find the adopted generation algorithms. As reverse engineering cannot handle the variants of DGA families, some researches leverage supervised learning to find new variants. However, the explainability of supervised learning is low and cannot find previously unseen DGA families. In this paper, we propose a graph-based semi-supervised learning scheme to track the evolution of known DGA families and find previously unseen DGA families. With a domain relation graph, we can clearly figure out how new variants relate to known DGA domain names, which induces better explainability. We deployed the proposed scheme on real network scenarios and show that the proposed scheme can not only comprehensively and precisely find known DGA families, but also can find new DGA families which have not seen before.
Yang, Ping, Shu, Hui, Kang, Fei, Bu, Wenjuan.  2020.  Automatically Generating Malware Summary Using Semantic Behavior Graphs (SBGs). 2020 Information Communication Technologies Conference (ICTC). :282–291.
In malware behavior analysis, there are limitations in the analysis method of control flow and data flow. Researchers analyzed data flow by dynamic taint analysis tools, however, it cost a lot. In this paper, we proposed a method of generating malware summary based on semantic behavior graphs (SBGs, Semantic Behavior Graphs) to address this issue. In this paper, we considered various situation where behaviors be capable of being associated, thus an algorithm of generating semantic behavior graphs was given firstly. Semantic behavior graphs are composed of behavior nodes and associated data edges. Then, we extracted behaviors and logical relationships between behaviors from semantic behavior graphs, and finally generated a summary of malware behaviors with true intension. Experimental results showed that our approach can effectively identify and describe malicious behaviors and generate accurate behavior summary.
Chai, Yuhan, Qiu, Jing, Su, Shen, Zhu, Chunsheng, Yin, Lihua, Tian, Zhihong.  2020.  LGMal: A Joint Framework Based on Local and Global Features for Malware Detection. 2020 International Wireless Communications and Mobile Computing (IWCMC). :463–468.
With the gradual advancement of smart city construction, various information systems have been widely used in smart cities. In order to obtain huge economic benefits, criminals frequently invade the information system, which leads to the increase of malware. Malware attacks not only seriously infringe on the legitimate rights and interests of users, but also cause huge economic losses. Signature-based malware detection algorithms can only detect known malware, and are susceptible to evasion techniques such as binary obfuscation. Behavior-based malware detection methods can solve this problem well. Although there are some malware behavior analysis works, they may ignore semantic information in the malware API call sequence. In this paper, we design a joint framework based on local and global features for malware detection to solve the problem of network security of smart cities, called LGMal, which combines the stacked convolutional neural network and graph convolutional networks. Specially, the stacked convolutional neural network is used to learn API call sequence information to capture local semantic features and the graph convolutional networks is used to learn API call semantic graph structure information to capture global semantic features. Experiments on Alibaba Cloud Security Malware Detection datasets show that the joint framework gets better results. The experimental results show that the precision is 87.76%, the recall is 88.08%, and the F1-measure is 87.79%. We hope this paper can provide a useful way for malware detection and protect the network security of smart city.
Wang, Duanyi, Shu, Hui, Kang, Fei, Bu, Wenjuan.  2020.  A Malware Similarity Analysis Method Based on Network Control Structure Graph. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :295–300.
Recently, graph-based malware similarity analysis has been widely used in the field of malware detection. However, the wide application of code obfuscation, polymorphism, and deformation changes the structure of malicious code, which brings great challenges to the malware similarity analysis. To solve these problems, in this paper, we present a new approach to malware similarity analysis based on the network control structure graph (NCSG). This method analyzed the behavior of malware by application program interface (API) association and constructed NCSG. The graph could reflect the command-and-control(C&C) logic of malware. Therefore, it can resist the interference of code obfuscation technology. The structural features extracted from NCSG will be used as the basis of similarity analysis for training the detection model. Finally, we tested the dataset constructed from five known malware family samples, and the experimental results showed that the accuracy of this method for malware variation analysis reached 92.75%. In conclusion, the malware similarity analysis based on NCSG has a strong application value for identifying the same family of malware.
Ramadhan, Beno, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2020.  Forensic Malware Identification Using Naive Bayes Method. 2020 International Conference on Information Technology Systems and Innovation (ICITSI). :1–7.
Malware is a kind of software that, if installed on a malware victim's device, might carry malicious actions. The malicious actions might be data theft, system failure, or denial of service. Malware analysis is a process to identify whether a piece of software is a malware or not. However, with the advancement of malware technologies, there are several evasion techniques that could be implemented by malware developers to prevent analysis, such as polymorphic and oligomorphic. Therefore, this research proposes an automatic malware detection system. In the system, the malware characteristics data were obtained through both static and dynamic analysis processes. Data from the analysis process were classified using Naive Bayes algorithm to identify whether the software is a malware or not. The process of identifying malware and benign files using the Naive Bayes machine learning method has an accuracy value of 93 percent for the detection process using static characteristics and 85 percent for detection through dynamic characteristics.
Patil, Rajvardhan, Deng, Wei.  2020.  Malware Analysis using Machine Learning and Deep Learning techniques. 2020 SoutheastCon. 2:1–7.
In this era, where the volume and diversity of malware is rising exponentially, new techniques need to be employed for faster and accurate identification of the malwares. Manual heuristic inspection of malware analysis are neither effective in detecting new malware, nor efficient as they fail to keep up with the high spreading rate of malware. Machine learning approaches have therefore gained momentum. They have been used to automate static and dynamic analysis investigation where malware having similar behavior are clustered together, and based on the proximity unknown malwares get classified to their respective families. Although many such research efforts have been conducted where data-mining and machine-learning techniques have been applied, in this paper we show how the accuracy can further be improved using deep learning networks. As deep learning offers superior classification by constructing neural networks with a higher number of potentially diverse layers it leads to improvement in automatic detection and classification of the malware variants.In this research, we present a framework which extracts various feature-sets such as system calls, operational codes, sections, and byte codes from the malware files. In the experimental and result section, we compare the accuracy obtained from each of these features and demonstrate that feature vector for system calls yields the highest accuracy. The paper concludes by showing how deep learning approach performs better than the traditional shallow machine learning approaches.
Zhe, Wang, Wei, Cheng, Chunlin, Li.  2020.  DoS attack detection model of smart grid based on machine learning method. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :735–738.
In recent years, smart grid has gradually become the common development trend of the world's power industry, and its security issues are increasingly valued by researchers. Smart grids have applied technologies such as physical control, data encryption, and authentication to improve their security, but there is still a lack of timely and effective detection methods to prevent the grid from being threatened by malicious intrusions. Aiming at this problem, a model based on machine learning to detect smart grid DoS attacks has been proposed. The model first collects network data, secondly selects features and uses PCA for data dimensionality reduction, and finally uses SVM algorithm for abnormality detection. By testing the SVM, Decision Tree and Naive Bayesian Network classification algorithms on the KDD99 dataset, it is found that the SVM model works best.
Swarna Sugi, S. Shinly, Ratna, S. Raja.  2020.  Investigation of Machine Learning Techniques in Intrusion Detection System for IoT Network. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1164–1167.
Internet of Things (IoT) combines the internet and physical objects to transfer information among the objects. In the emerging IoT networks, providing security is the major issue. IoT device is exposed to various security issues due to its low computational efficiency. In recent years, the Intrusion Detection System valuable tool deployed to secure the information in the network. This article exposes the Intrusion Detection System (IDS) based on deep learning and machine learning to overcome the security attacks in IoT networks. Long Short-Term Memory (LSTM) and K-Nearest Neighbor (KNN) are used in the attack detection model and performances of those algorithms are compared with each other based on detection time, kappa statistic, geometric mean, and sensitivity. The effectiveness of the developed IDS is evaluated by using Bot-IoT datasets.