Visible to the public Biblio

Filters: Keyword is Internet of Things devices  [Clear All Filters]
Luecking, M., Fries, C., Lamberti, R., Stork, W..  2020.  Decentralized Identity and Trust Management Framework for Internet of Things. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—9.

Today, Internet of Things (IoT) devices mostly operate in enclosed, proprietary environments. To unfold the full potential of IoT applications, a unifying and permissionless environment is crucial. All IoT devices, even unknown to each other, would be able to trade services and assets across various domains. In order to realize those applications, uniquely resolvable identities are essential. However, quantifiable trust in identities and their authentication are not trivially provided in such an environment due to the absence of a trusted authority. This research presents a new identity and trust framework for IoT devices, based on Distributed Ledger Technology (DLT). IoT devices assign identities to themselves, which are managed publicly and decentralized on the DLT's network as Self Sovereign Identities (SSI). In addition to the Identity Management System (IdMS), the framework provides a Web of Trust (WoT) approach to enable automatic trust rating of arbitrary identities. For the framework we used the IOTA Tangle to access and store data, achieving high scalability and low computational overhead. To demonstrate the feasibility of our framework, we provide a proof-of-concept implementation and evaluate the set objectives for real world applicability as well as the vulnerability against common threats in IdMSs and WoTs.

McDermott, Thomas Allen.  2019.  A Rigorous System Engineering Process for Resilient Cyber-Physical Systems Design. 2019 International Symposium on Systems Engineering (ISSE). :1–8.
System assurance is the justified confidence that a system functions as intended and is free of exploitable vulnerabilities, either intentionally or unintentionally designed or inserted as part of the system at any time during the life cycle. The computation and communication backbone of Internet of Things (IoT) devices and other cyber-physical systems (CPS) makes them vulnerable to classes of threats previously not relevant for many physical control and computational systems. The design of resilient IoT systems encompasses vulnerabilities to adversarial disruption (Security), behavior in an operational environments (Function), and increasing interdependencies (Connectedness). System assurance can be met only through a comprehensive and aggressive systems engineering approach. Engineering methods to "design in" security have been explored in the United States through two separate research programs, one through the Systems Engineering Research Center (SERC) and one through the Defense Advanced Research Process Agency (DARPA). This paper integrates these two programs and discusses how assurance practices can be improved using new system engineering and system design strategies that rely on both functional and formal design methods.
Sevier, Seth, Tekeoglu, Ali.  2019.  Analyzing the Security of Bluetooth Low Energy. 2019 International Conference on Electronics, Information, and Communication (ICEIC). :1—5.
Internet of Things devices have spread to near ubiquity this decade. All around us now lies an invisible mesh of communication from devices embedded in seemingly everything. Inevitably some of that communication flying around our heads will contain data that must be protected or otherwise shielded from tampering. The responsibility to protect this sensitive information from malicious actors as it travels through the air then falls upon the standards used to communicate this data. Bluetooth Low Energy (BLE) is one of these standards, the aim of this paper is to put its security standards to test. By attempting to exploit its vulnerabilities we can see how secure this standard really is. In this paper, we present steps for analyzing the security of BLE devices using open-source hardware and software.
Molesky, Mason J., Cameron, Elizabeth A..  2019.  Internet of Things: An Analysis and Proposal of White Worm Technology. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1—4.

The quantity of Internet of Things (IoT) devices in the marketplace and lack of security is staggering. The interconnectedness of IoT devices has increased the attack surface for hackers. "White Worm" technology has the potential to combat infiltrating malware. Before white worm technology becomes viable, its capabilities must be constrained to specific devices and limited to non-harmful actions. This paper addresses the current problem, international research, and the conflicting interest of individuals, businesses, and governments regarding white worm technology. Proposed is a new perspective on utilizing white worm technology to protect the vulnerability of IoT devices, while overcoming its challenges.

Almajed, Hisham N., Almogren, Ahmad S..  2019.  SE-Enc: A Secure and Efficient Encoding Scheme Using Elliptic Curve Cryptography. IEEE Access. 7:175865–175878.
Many applications use asymmetric cryptography to secure communications between two parties. One of the main issues with asymmetric cryptography is the need for vast amounts of computation and storage. While this may be true, elliptic curve cryptography (ECC) is an approach to asymmetric cryptography used widely in low computation devices due to its effectiveness in generating small keys with a strong encryption mechanism. The ECC decreases power consumption and increases device performance, thereby making it suitable for a wide range of devices, ranging from sensors to the Internet of things (IoT) devices. It is necessary for the ECC to have a strong implementation to ensure secure communications, especially when encoding a message to an elliptic curve. It is equally important for the ECC to secure the mapping of the message to the curve used in the encryption. This work objective is to propose a trusted and proofed scheme that offers authenticated encryption (AE) for both encoding and mapping a message to the curve. In addition, this paper provides analytical results related to the security requirements of the proposed scheme against several encryption techniques. Additionally, a comparison is undertaken between the SE-Enc and other state-of-the-art encryption schemes to evaluate the performance of each scheme.
Danilchenko, Victor, Theobald, Matthew, Cohen, Daniel.  2019.  Bootstrapping Security Configuration for IoT Devices on Networks with TLS Inspection. 2019 IEEE Globecom Workshops (GC Wkshps). :1—7.

In the modern security-conscious world, Deep Packet Inspection (DPI) proxies are increasingly often used on industrial and enterprise networks to perform TLS unwrapping on all outbound connections. However, enabling TLS unwrapping requires local devices to have the DPI proxy Certificate Authority certificates installed. While for conventional computing devices this is addressed via enterprise management, it's a difficult problem for Internet of Things ("IoT") devices which are generally not under enterprise management, and may not even be capable of it due to their resource-constrained nature. Thus, for typical IoT devices, being installed on a network with DPI requires either manual device configuration or custom DPI proxy configuration, both of which solutions have significant shortcomings. This poses a serious challenge to the deployment of IoT devices on DPI-enabled intranets. The authors propose a solution to this problem: a method of installing on IoT devices the CA certificates for DPI proxy CAs, as well as other security configuration ("security bootstrapping"). The proposed solution respects the DPI policies, while allowing the commissioning of IoT and IIoT devices without the need for additional manual configuration either at device scope or at network scope. This is accomplished by performing the bootstrap operation over unsecured connection, and downloading certificates using TLS validation at application level. The resulting solution is light-weight and secure, yet does not require validation of the DPI proxy's CA certificates in order to perform the security bootstrapping, thus avoiding the chicken-and-egg problem inherent in using TLS on DPI-enabled intranets.

Egert, Rolf, Grube, Tim, Born, Dustin, Mühlhäuser, Max.  2019.  Modular Vulnerability Indication for the IoT in IP-Based Networks. 2019 IEEE Globecom Workshops (GC Wkshps). :1—6.

With the rapidly increasing number of Internet of Things (IoT) devices and their extensive integration into peoples' daily lives, the security of those devices is of primary importance. Nonetheless, many IoT devices suffer from the absence, or the bad application, of security concepts, which leads to severe vulnerabilities in those devices. To achieve early detection of potential vulnerabilities, network scanner tools are frequently used. However, most of those tools are highly specialized; thus, multiple tools and a meaningful correlation of their results are required to obtain an adequate listing of identified network vulnerabilities. To simplify this process, we propose a modular framework for automated network reconnaissance and vulnerability indication in IP-based networks. It allows integrating a diverse set of tools as either, scanning tools or analysis tools. Moreover, the framework enables result aggregation of different modules and allows information sharing between modules facilitating the development of advanced analysis modules. Additionally, intermediate scanning and analysis data is stored, enabling a historical view of derived information and also allowing users to retrace decision-making processes. We show the framework's modular capabilities by implementing one scanner module and three analysis modules. The automated process is then evaluated using an exemplary scenario with common IP-based IoT components.

Lange, Thomas, Kettani, Houssain.  2019.  On Security Threats of Botnets to Cyber Systems. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :176–183.
As the dynamics of cyber warfare continue to change, it is very important to be aware of the issues currently confronting cyberspace. One threat which continues to grow in the danger it poses to cyber security are botnets. Botnets can launch massive Distributed Denial of Service (DDoS) attacks against internet connected hosts anonymously, undertake intricate spam campaigns, launch mass financial fraud campaigns, and even manipulate public opinion via social media bots. The network topology and technology undergirding each botnet varies greatly, as do the motivations commonly behind such networks. Furthermore, as botnets have continued to evolve, many newer ones demonstrate increased levels of anonymity and sophistication, making it more difficult to effectively counter them. Increases in the production of vulnerable Internet of Things (IoT) devices has made it easier for malicious actors to quickly assemble sizable botnets. Because of this, the steps necessary to stop botnets also vary, and in some cases, it may be extremely difficult to effectively defeat a fully functional and sophisticated botnet. While in some cases, the infrastructure supporting the botnet can be targeted and remotely disabled, other cases require the physical assistance of law enforcement to shut down the botnet. In the latter case, it is often a significant challenge to cheaply end a botnet. On the other hand, there are many steps and mitigations that can be taken by end-users to prevent their own devices from becoming part of a botnet. Many of these solutions involve implementing basic cybersecurity practices like installing firewalls and changing default passwords. More sophisticated botnets may require similarly sophisticated intrusion detection systems, to detect and remove malicious infections. Much research has gone into such systems and in recent years many researchers have begun to implement machine learning techniques to defeat botnets. This paper is intended present a review on botnet evolution, trends and mitigations, and offer related examples and research to provide the reader with quick access to a broad understanding of the issues at hand.
Salehi, Majid, Hughes, Danny, Crispo, Bruno.  2019.  MicroGuard: Securing Bare-Metal Microcontrollers against Code-Reuse Attacks. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Bare-metal microcontrollers are a family of Internet of Things (IoT) devices which are increasingly deployed in critical industrial environments. Similar to other IoT devices, bare-metal microcontrollers are vulnerable to memory corruption and code-reuse attacks. We propose MicroGuard, a novel mitigation method based on component-level sandboxing and automated code randomization to securely encapsulate application components in isolated environments. We implemented MicroGuard and evaluated its efficacy and efficiency with a real-world benchmark against different types of attacks. As our evaluation shows, MicroGuard provides better security than ACES, current state-of-the-art protection framework for bare-metal microcontrollers, with a comparable performance overhead.
Hirano, Manabu, Kobayashi, Ryotaro.  2019.  Machine Learning Based Ransomware Detection Using Storage Access Patterns Obtained From Live-forensic Hypervisor. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–6.
With the rapid increase in the number of Internet of Things (IoT) devices, mobile devices, cloud services, and cyber-physical systems, the large-scale cyber attacks on enterprises and public sectors have increased. In particular, ransomware attacks damaged UK's National Health Service and many enterprises around the world in 2017. Therefore, researchers have proposed ransomware detection and prevention systems. However, manual inspection in static and dynamic ransomware analysis is time-consuming and it cannot cope with the rapid increase in variants of ransomware family. Recently, machine learning has been used to automate ransomware analysis by creating a behavioral model of same ransomware family. To create effective behavioral models of ransomware, we first obtained storage access patterns of live ransomware samples and of a benign application by using a live-forensic hypervisor called WaybackVisor. To distinguish ransomware from a benign application that has similar behavior to ransomware, we carefully selected five dimensional features that were extracted both from actual ransomware's Input and Output (I/O) logs and from a benign program's I/O logs. We created and evaluated machine learning models by using Random Forest, Support Vector Machine, and K-Nearest Neighbors. Our experiments using the proposed five features of storage access patterns achieved F-measure rate of 98%.
Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Giannoulakis, Ioannis, Kafetzakis, Emmanouil, Panaousis, Emmanouil.  2019.  Attacking IEC-60870-5-104 SCADA Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:41–46.
The rapid evolution of the Information and Communications Technology (ICT) services transforms the conventional electrical grid into a new paradigm called Smart Grid (SG). Even though SG brings significant improvements, such as increased reliability and better energy management, it also introduces multiple security challenges. One of the main reasons for this is that SG combines a wide range of heterogeneous technologies, including Internet of Things (IoT) devices as well as Supervisory Control and Data Acquisition (SCADA) systems. The latter are responsible for monitoring and controlling the automatic procedures of energy transmission and distribution. Nevertheless, the presence of these systems introduces multiple vulnerabilities because their protocols do not implement essential security mechanisms such as authentication and access control. In this paper, we focus our attention on the security issues of the IEC 60870-5-104 (IEC-104) protocol, which is widely utilized in the European energy sector. In particular, we provide a SCADA threat model based on a Coloured Petri Net (CPN) and emulate four different types of cyber attacks against IEC-104. Last, we used AlienVault's risk assessment model to evaluate the risk level that each of these cyber attacks introduces to our system to confirm our intuition about their severity.
Subahi, Alanoud, Theodorakopoulos, George.  2018.  Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :100–107.
In the past few years, Internet of Things (IoT) devices have emerged and spread everywhere. Many researchers have been motivated to study the security issues of IoT devices due to the sensitive information they carry about their owners. Privacy is not simply about encryption and access authorization, but also about what kind of information is transmitted, how it used and to whom it will be shared with. Thus, IoT manufacturers should be compelled to issue Privacy Policy Agreements for their respective devices as well as ensure that the actual behavior of the IoT device complies with the issued privacy policy. In this paper, we implement a test bed for ensuring compliance of Internet of Things data disclosure to the corresponding privacy policy. The fundamental approach used in the test bed is to capture the data traffic between the IoT device and the cloud, between the IoT device and its application on the smart-phone, and between the IoT application and the cloud and analyze those packets for various features. We test 11 IoT manufacturers and the results reveal that half of those IoT manufacturers do not have an adequate privacy policy specifically for their IoT devices. In addition, we prove that the action of two IoT devices does not comply with what they stated in their privacy policy agreement.
Borgolte, Kevin, Hao, Shuang, Fiebig, Tobias, Vigna, Giovanni.  2018.  Enumerating Active IPv6 Hosts for Large-Scale Security Scans via DNSSEC-Signed Reverse Zones. 2018 IEEE Symposium on Security and Privacy (SP). :770-784.

Security research has made extensive use of exhaustive Internet-wide scans over the recent years, as they can provide significant insights into the overall state of security of the Internet, and ZMap made scanning the entire IPv4 address space practical. However, the IPv4 address space is exhausted, and a switch to IPv6, the only accepted long-term solution, is inevitable. In turn, to better understand the security of devices connected to the Internet, including in particular Internet of Things devices, it is imperative to include IPv6 addresses in security evaluations and scans. Unfortunately, it is practically infeasible to iterate through the entire IPv6 address space, as it is 2ˆ96 times larger than the IPv4 address space. Therefore, enumeration of active hosts prior to scanning is necessary. Without it, we will be unable to investigate the overall security of Internet-connected devices in the future. In this paper, we introduce a novel technique to enumerate an active part of the IPv6 address space by walking DNSSEC-signed IPv6 reverse zones. Subsequently, by scanning the enumerated addresses, we uncover significant security problems: the exposure of sensitive data, and incorrectly controlled access to hosts, such as access to routing infrastructure via administrative interfaces, all of which were accessible via IPv6. Furthermore, from our analysis of the differences between accessing dual-stack hosts via IPv6 and IPv4, we hypothesize that the root cause is that machines automatically and by default take on globally routable IPv6 addresses. This is a practice that the affected system administrators appear unaware of, as the respective services are almost always properly protected from unauthorized access via IPv4. Our findings indicate (i) that enumerating active IPv6 hosts is practical without a preferential network position contrary to common belief, (ii) that the security of active IPv6 hosts is currently still lagging behind the security state of IPv4 hosts, and (iii) that unintended IPv6 connectivity is a major security issue for unaware system administrators.

Ioini, N. E., Pahl, C..  2018.  Trustworthy Orchestration of Container Based Edge Computing Using Permissioned Blockchain. 2018 Fifth International Conference on Internet of Things: Systems, Management and Security. :147-154.

The need to process the verity, volume and velocity of data generated by today's Internet of Things (IoT) devices has pushed both academia and the industry to investigate new architectural alternatives to support the new challenges. As a result, Edge Computing (EC) has emerged to address these issues, by placing part of the cloud resources (e.g., computation, storage, logic) closer to the edge of the network, which allows faster and context dependent data analysis and storage. However, as EC infrastructures grow, different providers who do not necessarily trust each other need to collaborate in order serve different IoT devices. In this context, EC infrastructures, IoT devices and the data transiting the network all need to be subject to identity and provenance checks, in order to increase trust and accountability. Each device/data in the network needs to be identified and the provenance of its actions needs to be tracked. In this paper, we propose a blockchain container based architecture that implements the W3C-PROV Data Model, to track identities and provenance of all orchestration decisions of a business network. This architecture provides new forms of interaction between the different stakeholders, which supports trustworthy transactions and leads to a new decentralized interaction model for IoT based applications.