Visible to the public Biblio

Filters: Keyword is software radio  [Clear All Filters]
Thanuja, T. C., Daman, K. A., Patil, A. S..  2020.  Optimized Spectrum sensing Techniques for Enhanced Throughput in Cognitive Radio Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :137–141.
The wireless communication is a backbone for a development of a nation. But spectrum is finite resource and issues like spectrum scarcity, loss of signal quality, transmission delay, raised in wireless communication system due to growth of wireless applications and exponentially increased number of users. Secondary use of a spectrum using Software Defined Radio (SDR) is one of the solutions which is also supported by TRAI. The spectrum sensing is key process in communication based on secondary use of spectrum. But energy consumption, added delay, primary users security are some threats in this system. Here in this paper we mainly focused on throughput optimization in secondary use of spectrum based on optimal sensing time and number of Secondary users during cooperative spectrum sensing in Cognitive radio networks.
Hou, N., Zheng, Y..  2020.  CloakLoRa: A Covert Channel over LoRa PHY. 2020 IEEE 28th International Conference on Network Protocols (ICNP). :1—11.
This paper describes our design and implementation of a covert channel over LoRa physical layer (PHY). LoRa adopts a unique modulation scheme (chirp spread spectrum (CSS)) to enable long range communication at low-power consumption. CSS uses the initial frequencies of LoRa chirps to differentiate LoRa symbols, while simply ignoring other RF parameters (e.g., amplitude and phase). Our study reveals that the LoRa physical layer leaves sufficient room to build a covert channel by embedding covert information with a modulation scheme orthogonal to CSS. To demonstrate the feasibility of building a covert channel, we implement CloakLoRa. CloakLoRa embeds covert information into a regular LoRa packet by modulating the amplitudes of LoRa chirps while keeping the frequency intact. As amplitude modulation is orthogonal to CSS, a regular LoRa node receives the LoRa packet as if no secret information is embedded into the packet. Such an embedding method is transparent to all security mechanisms at upper layers in current LoRaWAN. As such, an attacker can create an amplitude modulated covert channel over LoRa without being detected by current LoRaWAN security mechanism. We conduct comprehensive evaluations with COTS LoRa nodes and receive-only software defined radios and experiment results show that CloakLoRa can send covert information over 250m.
Helluy-Lafont, É, Boé, A., Grimaud, G., Hauspie, M..  2020.  Bluetooth devices fingerprinting using low cost SDR. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :289—294.
Physical fingerprinting is a trending domain in wireless security. Those methods aim at identifying transmitters based on the subtle variations existing in their handling of a communication protocol. They can provide an additional authentication layer, hard to emulate, to improve the security of systems. Software Defined Radios (SDR) are a tool of choice for the fingerprinting, as they virtually enable the analysis of any wireless communication scheme. However, they require expensive computations, and are still complex to handle by newcomers. In this paper, we use low cost SDR to propose a physical-layer fingerprinting approach, that allows recognition of the model of a device performing a Bluetooth scan, with more than 99.8% accuracy in a set of ten devices.
Cominelli, M., Gringoli, F., Patras, P., Lind, M., Noubir, G..  2020.  Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices. 2020 IEEE Symposium on Security and Privacy (SP). :534—548.

Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.

Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.

Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.  2019.  IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
Yıldırım, A. Y., Kurt, G. K..  2018.  A filter selection based physical layer security system. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper a new physical layer security method is proposed against eavesdropping attacks. Our purpose is to demonstrate that performance of the legitimate receiver can be increased and performance of the eavesdropper can be decreased by matching between the roll of factors of root raised cosine filters in the transmitter and receiver. Through the matching between the roll of factors (a), a performance difference is generated between the legitimate receiver and the eavesdropper. By using three software defined radio nodes error vector magnitude of the legitimate receiver and the eavesdropper is measured according to roll of factors. Performance differences the receiver are demonstrated when the roll off factor is matched and mismatched.
Huang, Kaiyu, Qu, Y., Zhang, Z., Chakravarthy, V., Zhang, Lin, Wu, Z..  2017.  Software Defined Radio Based Mixed Signal Detection in Spectrally Congested and Spectrally Contested Environment. 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). :1–6.

In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.

Arumugam, T., Scott-Hayward, S..  2017.  Demonstrating State-Based Security Protection Mechanisms in Software Defined Networks. 2017 8th International Conference on the Network of the Future (NOF). :123–125.

The deployment of Software Defined Networking (SDN) and Network Functions Virtualization (NFV) technologies is increasing, with security as a recognized application driving adoption. However, despite the potential with SDN/NFV for automated and adaptive network security services, the controller interaction presents both a performance and scalability challenge, and a threat vector. To overcome the performance issue, stateful data-plane designs have been proposed. However, these solutions do not offer protection from SDN-specific attacks linked to necessary control functions such as link reconfiguration and switch identification. In this work, we leverage the OpenState framework to introduce state-based SDN security protection mechanisms. The extensions required for this design are presented with respect to an SDN configuration-based attack. The demonstration shows the ability of the SDN Configuration (CFG) security protection mechanism to support legitimate relocation requests and to protect against malicious connection attempts.

Almoualem, F., Satam, P., Ki, J. G., Hariri, S..  2017.  SDR-Based Resilient Wireless Communications. 2017 International Conference on Cloud and Autonomic Computing (ICCAC). :114–119.

As the use of wireless technologies increases significantly due to ease of deployment, cost-effectiveness and the increase in bandwidth, there is a critical need to make the wireless communications secure, and resilient to attacks or faults (malicious or natural). Wireless communications are inherently prone to cyberattacks due to the open access to the medium. While current wireless protocols have addressed the privacy issues, they have failed to provide effective solutions against denial of service attacks, session hijacking and jamming attacks. In this paper, we present a resilient wireless communication architecture based on Moving Target Defense, and Software Defined Radios (SDRs). The approach achieves its resilient operations by randomly changing the runtime characteristics of the wireless communications channels between different wireless nodes to make it extremely difficult to succeed in launching attacks. The runtime characteristics that can be changed include packet size, network address, modulation type, and the operating frequency of the channel. In addition, the lifespan for each configuration will be random. To reduce the overhead in switching between two consecutive configurations, we use two radio channels that are selected at random from a finite set of potential channels, one will be designated as an active channel while the second acts as a standby channel. This will harden the wireless communications attacks because the attackers have no clue on what channels are currently being used to exploit existing vulnerability and launch an attack. The experimental results and evaluation show that our approach can tolerate a wide range of attacks (Jamming, DOS and session attacks) against wireless networks.

Kuklinski, S..  2014.  Programmable management framework for evolved SDN. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-8.

In the paper a programmable management framework for SDN networks is presented. The concept is in-line with SDN philosophy - it can be programmed from scratch. The implemented management functions can be case dependent. The concept introduces a new node in the SDN architecture, namely the SDN manager. In compliance with the latest trends in network management the approach allows for embedded management of all network nodes and gradual implementation of management functions providing their code lifecycle management as well as the ability to on-the-fly code update. The described concept is a bottom-up approach, which key element is distributed execution environment (PDEE) that is based on well-established technologies like OSGI and FIPA. The described management idea has strong impact on the evolution of the SDN architecture, because the proposed distributed execution environment is a generic one, therefore it can be used not only for the management, but also for distributing of control or application functions.

Gelenbe, E..  2014.  A Software Defined Self-Aware Network: The Cognitive Packet Network. Network Cloud Computing and Applications (NCCA), 2014 IEEE 3rd Symposium on. :9-14.

This article is a summary description of the Cognitive Packet Network (CPN) which is an example both of a completely software defined network (SDN) and of a self-aware computer network (SAN) which has been completely implemented and used in numerous experiments. CPN is able to observe its own internal performance as well as the interfaces of the external systems that it interacts with, in order to modify its behaviour so as to adaptively achieve objectives, such as discovering services for its users, improving their Quality of Service (QoS), reduce its own energy consumption, compensate for components which fail or malfunction, detect and react to intrusions, and defend itself against attacks.

Weikun Hou, Xianbin Wang, Chouinard, J.-Y., Refaey, A..  2014.  Physical Layer Authentication for Mobile Systems with Time-Varying Carrier Frequency Offsets. Communications, IEEE Transactions on. 62:1658-1667.

A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.

Crisan, D., Birke, R., Barabash, K., Cohen, R., Gusat, M..  2014.  Datacenter Applications in Virtualized Networks: A Cross-Layer Performance Study. Selected Areas in Communications, IEEE Journal on. 32:77-87.

Datacenter-based Cloud computing has induced new disruptive trends in networking, key among which is network virtualization. Software-Defined Networking overlays aim to improve the efficiency of the next generation multitenant datacenters. While early overlay prototypes are already available, they focus mainly on core functionality, with little being known yet about their impact on the system level performance. Using query completion time as our primary performance metric, we evaluate the overlay network impact on two representative datacenter workloads, Partition/Aggregate and 3-Tier. We measure how much performance is traded for overlay's benefits in manageability, security and policing. Finally, we aim to assist the datacenter architects by providing a detailed evaluation of the key overlay choices, all made possible by our accurate cross-layer hybrid/mesoscale simulation platform.

Poberezhskiy, Y.S., Poberezhskiy, G.Y..  2014.  Impact of the sampling theorem interpretations on digitization and reconstruction in SDRs and CRs. Aerospace Conference, 2014 IEEE. :1-20.

Sampling and reconstruction (S&R) are used in virtually all areas of science and technology. The classical sampling theorem is a theoretical foundation of S&R. However, for a long time, only sampling rates and ways of the sampled signals representation were derived from it. The fact that the design of S&R circuits (SCs and RCs) is based on a certain interpretation of the sampling theorem was mostly forgotten. The traditional interpretation of this theorem was selected at the time of the theorem introduction because it offered the only feasible way of S&R realization then. At that time, its drawbacks did not manifest themselves. By now, this interpretation has largely exhausted its potential and inhibits future progress in the field. This tutorial expands the theoretical foundation of S&R. It shows that the traditional interpretation, which is indirect, can be replaced by the direct one or by various combinations of the direct and indirect interpretations that enable development of novel SCs and RCs (NSCs and NRCs) with advanced properties. The tutorial explains the basic principles of the NSCs and NRCs design, their advantages, as well as theoretical problems and practical challenges of their realization. The influence of the NSCs and NRCs on the architectures of SDRs and CRs is also discussed.

Cardoso, L.S., Massouri, A., Guillon, B., Ferrand, P., Hutu, F., Villemaud, G., Risset, T., Gorce, J.-M..  2014.  CorteXlab: A facility for testing cognitive radio networks in a reproducible environment. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on. :503-507.

While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.