Visible to the public Biblio

Filters: Keyword is Interference  [Clear All Filters]
2021-06-30
He, Kexun, Qin, Kongjian, Wang, Changyuan, Fang, Xiyu.  2020.  Research on Cyber Security Test Method for GNSS of Intelligent Connected Vehicle. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :200—203.
Intelligent connected vehicle cyber security has attracted widespread attention this year. The safety of GNSS information is related to the safety of cars and has become a key technology. This paper researches the cyber security characteristics of intelligent connected vehicle navigation and positioning by analyzing the signal receiving mode of navigation and positioning on the vehicle terminal. The article expounds the principles of deceiving and interfering cyber security that lead to the safety of GNSS information. This paper studies the key causes of cyber security. Based on key causes, the article constructs a GNSS cyber security test method by combining a navigation signal simulator and an interference signal generator. The results shows that the method can realize the security test of the GNSS information of the vehicle terminal. This method provides a test method for the navigation terminal defense cyber security capability for a vehicle terminal, and fills a gap in the industry for the vehicle terminal information security test.
2021-05-05
Zhang, Qiao-Jia, Ye, Qing, Yuan, Zhi-Min, Li, Liang.  2020.  Fast HEVC Selective Encryption Scheme Based on Improved CABAC Coding Algorithm. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1022—1028.

Context-based adaptive binary arithmetic coding (CABAC) is the only entropy coding method in HEVC. According to statistics, CABAC encoders account for more than 25% of the high efficiency video coding (HEVC) coding time. Therefore, the improved CABAC algorithm can effectively improve the coding speed of HEVC. On this basis, a selective encryption scheme based on the improved CABAC algorithm is proposed. Firstly, the improved CABAC algorithm is used to optimize the regular mode encoding, and then the cryptographic algorithm is used to selectively encrypt the syntax elements in bypass mode encoding. The experimental results show that the encoding time is reduced by nearly 10% when there is great interference to the video information. The scheme is both safe and effective.

2021-04-08
Bloch, M., Laneman, J. N..  2009.  Information-spectrum methods for information-theoretic security. 2009 Information Theory and Applications Workshop. :23–28.
We investigate the potential of an information-spectrum approach to information-theoretic security. We show how this approach provides conceptually simple yet powerful results that can be used to investigate complex communication scenarios. In particular, we illustrate the usefulness of information-spectrum methods by analyzing the effect of channel state information (CSI) on the secure rates achievable over wiretap channels. We establish a formula for secrecy capacity, which we then specialize to compute achievable rates for ergodic fading channels in the presence of imperfect CSI. Our results confirm the importance of having some knowledge about the eavesdropper's channel, but also show that imperfect CSI does not necessarily preclude security.
2021-03-15
Bouzegag, Y., Teguig, D., Maali, A., Sadoudi, S..  2020.  On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
Salama, G. M., Taha, S. A..  2020.  Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cognitive radio is development of wireless communication and mobile computing. Spectrum is a limited source. The licensed spectrum is proposed to be used only by the spectrum owners. Cognitive radio is a new view of the recycle licensed spectrum in an unlicensed manner. The main condition of the cognitive radio network is sensing the spectrum hole. Cognitive radio can be detect unused spectrum. It shares this with no interference to the licensed spectrum. It can be a sense signals. It makes viable communication in the middle of multiple users through co-operation in a self-organized manner. The energy detector method is unseen signal detector because it reject the data of the signal.In this paper, has implemented Simulink Energy Detection of spectrum sensing cognitive radio in a MATLAB Simulink to Exploit spectrum holes and avoid damaging interference to licensed spectrum and unlicensed spectrum. The hidden primary user problem will happened because fading or shadowing. Ithappens when cognitive radio could not be detected by primer users because of its location. Cooperative sensing spectrum sensing is the best-proposed method to solve the hidden problem.
2021-02-23
Yu, M., He, T., McDaniel, P., Burke, Q. K..  2020.  Flow Table Security in SDN: Adversarial Reconnaissance and Intelligent Attacks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1519—1528.

The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.

2021-02-10
Shang, F., Li, X., Zhai, D., Lu, Y., Zhang, D., Qian, Y..  2020.  On the Distributed Jamming System of Covert Timing Channels in 5G Networks. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1107—1111.
To build the fifth generation (5G) mobile network, the sharing structure in the 5G network adopted in industries has gained great research interesting. However, in this structure data are shared among diversity networks, which introduces the threaten of network security, such as covert timing channels. To eliminate the covert timing channel, we propose to inject noise into the covert timing channel. By analyzing the modulation method of covert timing channels, we design the jamming strategy on the covert channel. According to the strategy, the interference algorithm of the covert timing channel is designed. Since the interference algorithm depends heavily on the memory, we construct a distributing jammer. Experiments results show that these covert time channel can be blocked under the distributing jammer.
2020-12-28
Borio, D., Gioia, C..  2020.  Mitigation of Frequency-Hopped Tick Jamming Signals. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). :624—630.

Global Navigation Satellite System (GNSS) jamming is an evolving technology where new modulations are progressively introduced in order to reduce the impact of interference mitigation techniques such as Adaptive Notch Filters (ANFs). The Standardisation of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation (STRIKE3) project recently described a new class of jamming signals, called tick signals, where a basic frequency tick is hopped over a large frequency range. In this way, discontinuities are introduced in the instantaneous frequency of the jamming signals. These discontinuities reduce the effectiveness of ANFs, which unable to track the jamming signal. This paper analyses the effectiveness of interference mitigation techniques with respect to frequency-hopped tick jamming signals. ANFs and Robust Interference Mitigation (RIM) techniques are analysed. From the analysis, it emerges that, despite the presence of frequency discontinuities, ANFs provide some margin against tick signals. However, frequency discontinuities prevent ANFs to remove all the jamming components and receiver operations are denied for moderate Jamming to Noise power ratio (J/N) values, RIM techniques are not affected by the presence of frequency discontinuities and significantly higher jamming power are sustained by the receiver when this type of techniques is adopted.

Kulikov, G. V., Tien, D. T., Kulagin, V. P..  2020.  Adaptive filtering of non-fluctuation interference when receiving signals with multi-position phase shift keying. 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). :1—4.

{The paper considers the efficiency of an adaptive non-recursive filter using the adjustment algorithm for weighting coefficients taking into account the constant envelope of the desired signal when receiving signals with multi-position phase shift keying against the background of noise and non-fluctuation interference. Two types of such interference are considered - harmonic and retranslated. The optimal filter parameters (adaptation coefficient and length) are determined by using simulation; the effect of the filter on the noise immunity of a quadrature coherent signal receiver with multi-position phase shift keying for different combinations of interference and their intensity is estimated. It is shown that such an adaptive filter can successfully deal with the most dangerous sighting harmonic interference}.

2020-12-14
Dong, X., Kang, Q., Yao, Q., Lu, D., Xu, Y., Liu, J..  2020.  Towards Primary User Sybil-proofness for Online Spectrum Auction in Dynamic Spectrum Access. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1439–1448.
Dynamic spectrum access (DSA) is a promising platform to solve the spectrum shortage problem, in which auction based mechanisms have been extensively studied due to good spectrum allocation efficiency and fairness. Recently, Sybil attacks were introduced in DSA, and Sybil-proof spectrum auction mechanisms have been proposed, which guarantee that each single secondary user (SU) cannot obtain a higher utility under more than one fictitious identities. However, existing Sybil-poof spectrum auction mechanisms achieve only Sybil-proofness for SUs, but not for primary users (PUs), and simulations show that a cheating PU in those mechanisms can obtain a higher utility by Sybil attacks. In this paper, we propose TSUNAMI, the first Truthful and primary user Sybil-proof aUctioN mechAnisM for onlIne spectrum allocation. Specifically, we compute the opportunity cost of each SU and screen out cost-efficient SUs to participate in spectrum allocation. In addition, we present a bid-independent sorting method and a sequential matching approach to achieve primary user Sybil-proofness and 2-D truthfulness, which means that each SU or PU can gain her maximal utility by bidding with her true valuation of spectrum. We evaluate the performance and validate the desired properties of our proposed mechanism through extensive simulations.
Goudos, S. K., Diamantoulakis, P. D., Boursianis, A. D., Papanikolaou, V. K., Karagiannidis, G. K..  2020.  Joint User Association and Power Allocation Using Swarm Intelligence Algorithms in Non-Orthogonal Multiple Access Networks. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
In this paper, we address the problem of joint user association and power allocation for non-orthogonal multiple access (NOMA) networks with multiple base stations (BSs). A user grouping procedure into orthogonal clusters, as well as an allocation of different physical resource blocks (PRBs) is considered. The problem of interest is mathematically described using the maximization of the weighted sum rate. We apply two different swarm intelligence algorithms, namely, the recently introduced Grey Wolf Optimizer (GWO), and the popular Particle Swarm Optimization (PSO), in order to solve this problem. Numerical results demonstrate that the above-described problem can be satisfactorily addressed by both algorithms.
Kavitha, R., Malathi, K., Kunjachen, L. M..  2020.  Interference of Cyber Endanger using Support Vector Machine. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The wonder of cyberbullying, implied as persistent and repeated mischief caused through the use of PC systems, mobile phones, and noteworthy propelled contraptions. for instance, Hinduja and Patching upheld that 10-forty% of outlined children masses surrendered having dealt with it each as a harmed individual or as a with the guide of the use of-stander wherein additional progressively young individuals use development to issue, undermine, embarrass, or by and large burden their mates. Advanced badgering has starting at now been said as one which reason first rate harm to society and monetary machine. Advances in development related with web record remark and the assortment of the web associations renders the area and following of such models as a credibility hard and extremely problematic. This paper portrays a web structure for robotized revelation and seeing of Cyber-tormenting cases from on-line exchanges and on line associations. The device is mainly assembled completely absolutely as for the revelation of 3 basic ordinary language sections like Insults, Swears and 2d person. A sort machine and cosmology like reasoning had been contracted to go over the normality of such substances inside the trade board/web documents, which may conceivable explanation a message to security in case you have to take fitting improvement. The instrument has been dissected on staggering social occasions and achieves less steeply-esteemed acknowledgment displays.
2020-12-11
Li, J., Liu, H., Wu, J., Zhu, J., Huifeng, Y., Rui, X..  2019.  Research on Nonlinear Frequency Hopping Communication Under Big Data. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :349—354.

Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.

2020-11-17
Zhou, Z., Qian, L., Xu, H..  2019.  Intelligent Decentralized Dynamic Power Allocation in MANET at Tactical Edge based on Mean-Field Game Theory. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :604—609.

In this paper, decentralized dynamic power allocation problem has been investigated for mobile ad hoc network (MANET) at tactical edge. Due to the mobility and self-organizing features in MANET and environmental uncertainties in the battlefield, many existing optimal power allocation algorithms are neither efficient nor practical. Furthermore, the continuously increasing large scale of the wireless connection population in emerging Internet of Battlefield Things (IoBT) introduces additional challenges for optimal power allocation due to the “Curse of Dimensionality”. In order to address these challenges, a novel Actor-Critic-Mass algorithm is proposed by integrating the emerging Mean Field game theory with online reinforcement learning. The proposed approach is able to not only learn the optimal power allocation for IoBT in a decentralized manner, but also effectively handle uncertainties from harsh environment at tactical edge. In the developed scheme, each agent in IoBT has three neural networks (NN), i.e., 1) Critic NN learns the optimal cost function that minimizes the Signal-to-interference-plus-noise ratio (SINR), 2) Actor NN estimates the optimal transmitter power adjustment rate, and 3) Mass NN learns the probability density function of all agents' transmitting power in IoBT. The three NNs are tuned based on the Fokker-Planck-Kolmogorov (FPK) and Hamiltonian-Jacobian-Bellman (HJB) equation given in the Mean Field game theory. An IoBT wireless network has been simulated to evaluate the effectiveness of the proposed algorithm. The results demonstrate that the actor-critic-mass algorithm can effectively approximate the probability distribution of all agents' transmission power and converge to the target SINR. Moreover, the optimal decentralized power allocation is obtained through integrated mean-field game theory with reinforcement learning.

2020-10-05
Adebayo, Abdulhamid, Rawat, Danda B., Garuba, Moses, Njilla, Laurent.  2018.  Aggregated-Query-as-a-Secure-Service for RF Spectrum Database-Driven Opportunistic Wireless Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–2.
The US Federal Communications Commission (FCC) has recently mandated the database-driven dynamic spectrum access where unlicensed secondary users search for idle bands and use them opportunistically. The database-driven dynamic spectrum access approach is regarded for minimizing any harmful interference to licensed primary users caused by RF channel sensing uncertainties. However, when several secondary users (or several malicious users) query the RF spectrum database at the same time, spectrum server could experience denial of service (DoS) attack. In this paper, we investigate the Aggregated-Query-as-a-Secure-Service (AQaaSS) for querying RF spectrum database by secondary users for opportunistic wireless communications where selected number of secondary users aka grid leaders, query the database on behalf of all other secondary users, aka grid followers and relay the idle channel information to grid followers. Furthermore, the grid leaders are selected based on their both reputation or trust level and location in the network for the integrity of the information that grid followers receive. Grid followers also use the weighted majority voting to filter out comprised information about the idle channels. The performance of the proposed approach is evaluated using numerical results. The proposed approach gives lower latency (or same latency) to the secondary users and lower load (or same load) to the RF spectrum database server when more number of secondary users (or less number of secondary users) query than that of the server capacity.
2020-09-28
Park, Seok-Hwan, Simeone, Osvaldo, Shamai Shitz, Shlomo.  2018.  Optimizing Spectrum Pooling for Multi-Tenant C-RAN Under Privacy Constraints. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.
This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-tenant privacy constraints. The spectrum available for downlink transmission is partitioned into private and shared subbands, and the participating operators cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of finite-capacity fronthaul links. In order to enable inter-operator cooperation, the CPs of the participating operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence result in loss of privacy. The problem of optimizing the bandwidth allocation, precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and fronthaul capacity, as well as on per-RU transmit power and inter-onerator privacy.
2020-09-18
Pham-Thi-Dan, Ngoc, Do-Dac, Thiem, Ho-Van, Khuong, Vo-Que, Son, Pham-Ngoc, Son.  2019.  On Security Capability of Cooperative Communications in Energy Scavenging Cognitive Radio Networks. 2019 International Conference on Advanced Technologies for Communications (ATC). :89—93.
In this paper, secrecy outage probability (SOP) of cooperative communications in ESCRNs is numerically evaluated by the recommended precise closed-form formula which is corroborated by numerous computer simulations. Results expose that the relay's location, energy scavenging time, message recovering time, and power division for energy scavenging and message recovering dramatically impact the SOP of the cooperative communications in ESCRNs. Moreover, results infer that the SOP is constant either in energy scavenging non-cognitive networks (ES-nonCRNs) or in ESCRNs with infinite power transmitters.
Torabi, Mohammad, Pouri, Alireza Baghaei.  2019.  Physical Layer Security of a Two-Hop Mixed RF-FSO System in a Cognitive Radio Network. 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). :167—170.
In this paper, the physical layer (PHY)security performance of a dual-hop cooperative relaying in a cognitive-radio system in the presence of an eavesdropper is investigated. The dual-hop transmission is composed of an asymmetric radio frequency (RF)link and a free space optical (FSO)link. In the considered system, an unlicensed secondary user (SU)uses the spectrum which is shared by a licensed primary user (PU)in a controlled manner to keep the interference at PU receiver, below a predefined value. Furthermore, among M available relays, one relay with the best end-to-end signal-to-noise-ratio (SNR)is selected for transmission. It is assumed that all of the RF links follow Rayleigh fading and all of the FSO links follow Gamma-Gamma distribution. Simulations results for some important security metrics, such as the average secrecy capacity (SC), and secrecy outage probability (SOP)are presented, where some practical issues of FSO links such as atmospheric turbulence, and pointing errors are taken into consideration.
2020-08-03
LiPing, Yuan, Pin, Han.  2019.  Research of Low-Quality Laser Security Code Enhancement Technique. 2019 Chinese Automation Congress (CAC). :793–796.
The laser security code has been widely used for providing guarantee for ensuring quality of productions and maintaining market circulation order. The laser security code is printed on the surface of the productions, and it may be disturbed by printing method, printing position, package texture and background, which will make the laser security code cannot work normally. The image enhancement algorithm combining with bilateral filter and contrast limited adaptive histogram equalization is provided, which can realize the enhanced display of laser security code in strong interference background. The performance of this algorithm is analyzed and evaluated by experiments, and it can prove that the indexes of this algorithm are better than others.
2020-07-16
Zhang, Shisheng, Wang, Chencheng, Wang, Qishu.  2019.  Research on Time Concealed Channel Technology of Cloud Computing Platform Based on Shared Memory. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:904—909.

Security issues severely restrict the development and popularization of cloud computing. As a way of data leakage, covert channel greatly threatens the security of cloud platform. This paper introduces the types and research status of covert channels, and discusses the classical detection and interference methods of time-covert channels on cloud platforms for shared memory time covert channels.

2020-07-03
Arif, Syed Waqas, Coskun, Adem, Kale, Izzet.  2019.  A Fully Adaptive Lattice-based Notch Filter for Mitigation of Interference in GPS. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). :217—220.

Intentional interference presents a major threat to the operation of the Global Navigation Satellite Systems. Adaptive notch filtering provides an excellent countermeasure and deterrence against narrowband interference. This paper presents a comparative performance analysis of two adaptive notch filtering algorithms for GPS specific applications which are based on Direct form Second Order and Lattice-Based notch filter structures. Performance of each algorithm is evaluated considering the ratio of jamming to noise density against the effective signal to noise ratio at the output of the correlator. A fully adaptive lattice notch filter is proposed, which is able to simultaneously adapt its coefficients to alter the notch frequency along with the bandwidth of the notch filter. The filter demonstrated a superior tracking performance and convergence rate in comparison to an existing algorithm taken from the literature. Moreover, this paper describes the complete GPS modelling platform implemented in Simulink too.

2020-04-10
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.
Ebrahimi, Najme, Yektakhah, Behzad, Sarabandi, Kamal, Kim, Hun Seok, Wentzloff, David, Blaauw, David.  2019.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication. 2019 IEEE MTT-S International Microwave Symposium (IMS). :1096—1099.
In this work we present a novel technique for physical layer security in the Internet-of-Things (IoT) networks. In the proposed architecture, each IoT node generates a phase-modulated random key/data and transmits it to a master node in the presence of an eavesdropper, referred to as Eve. The master node, simultaneously, broadcasts a high power signal using an omni-directional antenna, which is received as interference by Eve. This interference masks the generated key by the IoT node and will result in a higher bit-error rate in the data received by Eve. The two legitimate intended nodes communicate in a full-duplex manner and, consequently, subtract their transmitted signals, as a known reference, from the received signal (self-interference cancellation). We compare our proposed method with a conventional approach to physical layer security based on directional antennas. In particular, we show, using theoretical and measurement results, that our proposed approach provides significantly better security measures, in terms bit error rate (BER) at Eve's location. Also, it is proven that in our novel system, the possible eavesdropping region, defined by the region with BER \textbackslashtextless; 10-1, is always smaller than the reliable communication region with BER \textbackslashtextless; 10-3.
2020-02-10
Barnes, Chloe M., Ekárt, Anikó, Lewis, Peter R..  2019.  Social Action in Socially Situated Agents. 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO). :97–106.
Two systems pursuing their own goals in a shared world can interact in ways that are not so explicit - such that the presence of another system alone can interfere with how one is able to achieve its own goals. Drawing inspiration from human psychology and the theory of social action, we propose the notion of employing social action in socially situated agents as a means of alleviating interference in interacting systems. Here we demonstrate that these specific issues of behavioural and evolutionary instability caused by the unintended consequences of interactions can be addressed with agents capable of a fusion of goal-rationality and traditional action, resulting in a stable society capable of achieving goals during the course of evolution.
2019-12-05
Mapunya, Sekgoari, Velempini, Mthulisi.  2018.  The Design of Byzantine Attack Mitigation Scheme in Cognitive Radio Ad-Hoc Networks. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC). :1-4.

The ever-increasing number of wireless network systems brought a problem of spectrum congestion leading to slow data communications. All of the radio spectrums are allocated to different users, services and applications. Hence studies have shown that some of those spectrum bands are underutilized while others are congested. Cognitive radio concept has evolved to solve the problem of spectrum congestion by allowing cognitive users to opportunistically utilize the underutilized spectrum while minimizing interference with other users. Byzantine attack is one of the security issues which threaten the successful deployment of this technology. Byzantine attack is compromised cognitive radios which relay falsified data about the availability of the spectrum to other legitimate cognitive radios in the network leading interference. In this paper we are proposing a security measure to thwart the effect caused by these attacks and compared it to Attack-Proof Cooperative Spectrum Sensing.