Visible to the public Biblio

Filters: Keyword is cooperative communication  [Clear All Filters]
2021-07-07
Behrens, Hans Walter, Candan, K. Selçuk.  2020.  Practical Security for Cooperative Ad Hoc Systems. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1–2.
Existing consumer devices represent the most pervasive computational platform available, but their inherently decentralized nature poses significant challenges for distributed computing adoption. In particular, device owners must willingly cooperate in collective deployments even while others may intentionally work to maliciously disrupt that cooperation. Public, cooperative systems benefit from low barriers to entry improving scalability and adoption, but simultaneously increase risk exposure to adversarial threats via promiscuous participant adoption. In this work, I aim to facilitate widespread adoption of cooperative systems by discussing the unique security and operational challenges of these systems, and highlighting several novel approaches that mitigate these disadvantages.
2021-04-08
Ekşim, A., Demirci, T..  2020.  Ultimate Secrecy in Cooperative and Multi-hop Wireless Communications. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. :1–4.
In this work, communication secrecy in cooperative and multi-hop wireless communications for various radio frequencies are examined. Attenuation lines and ranges of both detection and ultimate secrecy regions were calculated for cooperative communication channel and multi-hop channel with various number of hops. From results, frequency ranges with the highest potential to apply bandwidth saving method known as frequency reuse were determined and compared to point-to-point channel. Frequencies with the highest attenuation were derived and their ranges of both detection and ultimate secrecy are calculated. Point-to-point, cooperative and multi-hop channels were compared in terms of ultimate secrecy ranges. Multi-hop channel measurements were made with different number of hops and the relation between the number of hops and communication security is examined. Ultimate secrecy ranges were calculated up to 1 Terahertz and found to be less than 13 meters between 550-565 GHz frequency range. Therefore, for short-range wireless communication systems such as indoor and in-device communication systems (board-to-board or chip-to-chip communications), it is shown that various bands in the Terahertz band can be used to reuse the same frequency in different locations to obtain high security and high bandwidth.
2021-03-15
Wang, F., Zhang, X..  2020.  Secure Resource Allocation for Polarization-Based Non-Linear Energy Harvesting Over 5G Cooperative Cognitive Radio Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user's and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.
Bouzegag, Y., Teguig, D., Maali, A., Sadoudi, S..  2020.  On the Impact of SSDF Attacks in Hard Combination Schemes in Cognitive Radio Networks. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :19–24.
One of the critical threats menacing the Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRNs) is the Spectrum Sensing Data Falsification (SSDF) reports, which can deceive the decision of Fusion Center (FC) about the Primary User (PU) spectrum accessibility. In CSS, each CR user performs Energy Detection (ED) technique to detect the status of licensed frequency bands of the PU. This paper investigates the performance of different hard-decision fusion schemes (OR-rule, AND-rule, and MAJORITY-rule) in the presence of Always Yes and Always No Malicious User (AYMU and ANMU) over Rayleigh and Gaussian channels. More precisely, comparative study is conducted to evaluate the impact of such malicious users in CSS on the performance of various hard data combining rules in terms of miss detection and false alarm probabilities. Furthermore, computer simulations are carried out to show that the hard-decision fusion scheme with MAJORITY-rule is the best among hard-decision combination under AYMU attacks, OR-rule has the best detection performance under ANMU.
Morozov, M. Y., Perfilov, O. Y., Malyavina, N. V., Teryokhin, R. V., Chernova, I. V..  2020.  Combined Approach to SSDF-Attacks Mitigation in Cognitive Radio Networks. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Cognitive radio systems aim to solve the issue of spectrum scarcity through implementation of dynamic spectrum management and cooperative spectrum access. However, the structure of such systems introduced unique types of vulnerabilities and attacks, one of which is spectrum sensing data falsification attack (SSDF). In such attacks malicious users provide incorrect observations to the fusion center of the system, which may result in severe quality of service degradation and interference for licensed users. In this paper we investigate this type of attacks and propose a combined approach to their mitigation. On the first step a reputational method is used to isolate the initially untrustworthy nodes, on the second step specialized q-out-of-m fusion rule is utilized to mitigate the remains of attack. In this paper we present theoretical analysis of the proposed combined method.
Salama, G. M., Taha, S. A..  2020.  Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cognitive radio is development of wireless communication and mobile computing. Spectrum is a limited source. The licensed spectrum is proposed to be used only by the spectrum owners. Cognitive radio is a new view of the recycle licensed spectrum in an unlicensed manner. The main condition of the cognitive radio network is sensing the spectrum hole. Cognitive radio can be detect unused spectrum. It shares this with no interference to the licensed spectrum. It can be a sense signals. It makes viable communication in the middle of multiple users through co-operation in a self-organized manner. The energy detector method is unseen signal detector because it reject the data of the signal.In this paper, has implemented Simulink Energy Detection of spectrum sensing cognitive radio in a MATLAB Simulink to Exploit spectrum holes and avoid damaging interference to licensed spectrum and unlicensed spectrum. The hidden primary user problem will happened because fading or shadowing. Ithappens when cognitive radio could not be detected by primer users because of its location. Cooperative sensing spectrum sensing is the best-proposed method to solve the hidden problem.
Shekhawat, G. K., Yadav, R. P..  2020.  Sparse Code Multiple Access based Cooperative Spectrum Sensing in 5G Cognitive Radio Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
Fifth-generation (5G) network demands of higher data rate, massive user connectivity and large spectrum can be achieve using Sparse Code Multiple Access (SCMA) scheme. The integration of cognitive feature spectrum sensing with SCMA can enhance the spectrum efficiency in a heavily dense 5G wireless network. In this paper, we have investigated the primary user detection performance using SCMA in Centralized Cooperative Spectrum Sensing (CCSS). The developed model can support massive user connectivity, lower latency and higher spectrum utilization for future 5G networks. The simulation study is performed for AWGN and Rayleigh fading channel. Log-MPA iterative receiver based Log-Likelihood Ratio (LLR) soft test statistic is passed to Fusion Center (FC). The Wald-hypothesis test is used at FC to finalize the PU decision.
2021-02-23
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
2020-11-02
Sahbi, Roumissa, Ghanemi, Salim, Djouani, Ramissa.  2018.  A Network Model for Internet of vehicles based on SDN and Cloud Computing. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1—4.

Internet of vehicles (IoV) is the evolution of conventional vehicle network (VANET), a recent domain attracting a large number of companies and researchers. It is an integration of three networks: an inter-vehicle network, an intra-vehicle network, and vehicular mobile Internet, in which the vehicle is considered as a smart object equipped with powerful multi-sensors platform, connectivity and communication technologies, enabling it to communicate with the world. The cooperative communication between vehicles and other devices causes diverse challenges in terms of: storage and computing capability, energy of vehicle and network's control and management. Security is very important aspect in IoV and it is required to protect connected cars from cybercrime and accidents. In this article, we propose a network model for IoV based on software Defined Network and Cloud Computing.

2020-09-18
Pham-Thi-Dan, Ngoc, Do-Dac, Thiem, Ho-Van, Khuong, Vo-Que, Son, Pham-Ngoc, Son.  2019.  On Security Capability of Cooperative Communications in Energy Scavenging Cognitive Radio Networks. 2019 International Conference on Advanced Technologies for Communications (ATC). :89—93.
In this paper, secrecy outage probability (SOP) of cooperative communications in ESCRNs is numerically evaluated by the recommended precise closed-form formula which is corroborated by numerous computer simulations. Results expose that the relay's location, energy scavenging time, message recovering time, and power division for energy scavenging and message recovering dramatically impact the SOP of the cooperative communications in ESCRNs. Moreover, results infer that the SOP is constant either in energy scavenging non-cognitive networks (ES-nonCRNs) or in ESCRNs with infinite power transmitters.
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
Torabi, Mohammad, Pouri, Alireza Baghaei.  2019.  Physical Layer Security of a Two-Hop Mixed RF-FSO System in a Cognitive Radio Network. 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). :167—170.
In this paper, the physical layer (PHY)security performance of a dual-hop cooperative relaying in a cognitive-radio system in the presence of an eavesdropper is investigated. The dual-hop transmission is composed of an asymmetric radio frequency (RF)link and a free space optical (FSO)link. In the considered system, an unlicensed secondary user (SU)uses the spectrum which is shared by a licensed primary user (PU)in a controlled manner to keep the interference at PU receiver, below a predefined value. Furthermore, among M available relays, one relay with the best end-to-end signal-to-noise-ratio (SNR)is selected for transmission. It is assumed that all of the RF links follow Rayleigh fading and all of the FSO links follow Gamma-Gamma distribution. Simulations results for some important security metrics, such as the average secrecy capacity (SC), and secrecy outage probability (SOP)are presented, where some practical issues of FSO links such as atmospheric turbulence, and pointing errors are taken into consideration.
2020-09-08
Fang, Chao, Wang, Zhuwei, Huang, Huawei, Si, Pengbo, Yu, F. Richard.  2019.  A Stackelberg-Based Optimal Profit Split Scheme in Information-Centric Wireless Networks. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The explosive growth of mobile traffic in the Internet makes content delivery a challenging issue to cope with. To promote efficiency of content distribution and reduce network cost, Internet Service Providers (ISPs) and content providers (CPs) are motivated to cooperatively work. As a clean-slate solution, nowadays Information-Centric Networking architectures have been proposed and widely researched, where the thought of in-network caching, especially edge caching, can be applied to mobile wireless networks to fundamentally address this problem. Considered the profit split issue between ISPs and CPs and the influence of content popularity is largely ignored, in this paper, we propose a Stackelberg-based optimal network profit split scheme for content delivery in information-centric wireless networks. Simulation results show that the performance of our proposed model is comparable to its centralized solution and obviously superior to current ISP-CP cooperative schemes without considering cache deployment in the network.
2020-06-19
Demir, Mehmet özgÜn, Alp Topal, Ozan, Dartmann, Guido, Schmeink, Anke, Ascheid, Gerd, Kurt, GüneŞ, Pusane, Ali Emre.  2019.  Using Perfect Codes in Relay Aided Networks: A Security Analysis. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1—6.

Cyber-physical systems (CPS) are state-of-the-art communication environments that offer various applications with distinct requirements. However, security in CPS is a nonnegotiable concept, since without a proper security mechanism the applications of CPS may risk human lives, the privacy of individuals, and system operations. In this paper, we focus on PHY-layer security approaches in CPS to prevent passive eavesdropping attacks, and we propose an integration of physical layer operations to enhance security. Thanks to the McEliece cryptosystem, error injection is firstly applied to information bits, which are encoded with the forward error correction (FEC) schemes. Golay and Hamming codes are selected as FEC schemes to satisfy power and computational efficiency. Then obtained codewords are transmitted across reliable intermediate relays to the legitimate receiver. As a performance metric, the decoding frame error rate of the eavesdropper is analytically obtained for the fragmentary existence of significant noise between relays and Eve. The simulation results validate the analytical calculations, and the obtained results show that the number of low-quality channels and the selected FEC scheme affects the performance of the proposed model.

2020-06-02
Gong, Shixun, Li, Na, Wu, Huici, Tao, Xiaofeng.  2019.  Cooperative Two-Key Generation in Source-Type Model With Partial-Trusted Helpers. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :689—694.

This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.

2020-04-10
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.
Hao, Hao, Ying Li, Xin.  2019.  Research on Physical Layer Security of Cooperative Networks Based on Swipt. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA). :583—586.
In Cooperative Networks based on simultaneous wireless information and power transfer (SWIPT), relay nodes collect the energy of radio signals received from source node and transmit the information of source nodes to destination nodes, which not only prolongs the service life of energy-constrained nodes, but also improves the ability of long-distance transmission of information. Due to the openness of energy harvesting, there may be eavesdropping users with malicious decoding. In order to study the security performance of the Cooperative Networks based on SWIPT, this paper mainly studies the physical layer security performance of this network, derives and simulates the expression of system security outage probability and throughput. The simulation results show that the system security performance is mainly influenced by time allocation parameter of SWIPT and decreases with the increase of target rate.
Srinu, Sesham, Reddy, M. Kranthi Kumar, Temaneh-Nyah, Clement.  2019.  Physical layer security against cooperative anomaly attack using bivariate data in distributed CRNs. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :410—413.
Wireless communication network (WCN) performance is primarily depends on physical layer security which is critical among all other layers of OSI network model. It is typically prone to anomaly/malicious user's attacks owing to openness of wireless channels. Cognitive radio networking (CRN) is a recently emerged wireless technology that is having numerous security challenges because of its unlicensed access of wireless channels. In CRNs, the security issues occur mainly during spectrum sensing and is more pronounced during distributed spectrum sensing. In recent past, various anomaly effects are modelled and developed detectors by applying advanced statistical techniques. Nevertheless, many of these detectors have been developed based on sensing data of one variable (energy measurement) and degrades their performance drastically when the data is contaminated with multiple anomaly nodes, that attack the network cooperatively. Hence, one has to develop an efficient multiple anomaly detection algorithm to eliminate all possible cooperative attacks. To achieve this, in this work, the impact of anomaly on detection probability is verified beforehand in developing an efficient algorithm using bivariate data to detect possible attacks with mahalanobis distance measure. Result discloses that detection error of cooperative attacks by anomaly has significant impact on eigenvalue-based sensing.
2020-04-06
Boussaha, Ryma, Challal, Yacine, Bouabdallah, Abdelmadjid.  2018.  Authenticated Network Coding for Software-Defined Named Data Networking. 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). :1115–1122.
Named Data Networking (or NDN) represents a potential new approach to the current host based Internet architecture which prioritize content over the communication between end nodes. NDN relies on caching functionalities and local data storage, such as a content request could be satisfied by any node holding a copy of the content in its storage. Due to the fact that users in the same network domain can share their cached content with each other and in order to reduce the transmission cost for obtaining the desired content, a cooperative network coding mechanism is proposed in this paper. We first formulate our optimal coding and homomorphic signature scheme as a MIP problem and we show how to leverage Software Defined Networking to provide seamless implementation of the proposed solution. Evaluation results demonstrate the efficiency of the proposed coding scheme which achieves better performance than conventional NDN with random coding especially in terms of transmission cost and security.
2020-02-17
Broomandi, Fateme, Ghasemi, Abdorasoul.  2019.  An Improved Cooperative Cell Outage Detection in Self-Healing Het Nets Using Optimal Cooperative Range. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1956–1960.
Heterogeneous Networks (Het Nets) are introduced to fulfill the increasing demands of wireless communications. To be manageable, it is expected that these networks are self-organized and in particular, self-healing to detect and relief faults autonomously. In the Cooperative Cell Outage Detection (COD), the Macro-Base Station (MBS) and a group of Femto-Base Stations (FBSs) in a specific range are cooperatively communicating to find out if each FBS is working properly or not. In this paper, we discuss the impacts of the cooperation range on the detection delay and accuracy and then conclude that there is an optimal amount for cooperation range which maximizes detection accuracy. We then derive the optimal cooperative range that improves the detection accuracy by using network parameters such as FBS's transmission power, noise power, shadowing fading factor, and path-loss exponent and investigate the impacts of these parameters on the optimal cooperative range. The simulation results show the optimal cooperative range that we proposed maximizes the detection accuracy.
2019-12-05
Mapunya, Sekgoari, Velempini, Mthulisi.  2018.  The Design of Byzantine Attack Mitigation Scheme in Cognitive Radio Ad-Hoc Networks. 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC). :1-4.

The ever-increasing number of wireless network systems brought a problem of spectrum congestion leading to slow data communications. All of the radio spectrums are allocated to different users, services and applications. Hence studies have shown that some of those spectrum bands are underutilized while others are congested. Cognitive radio concept has evolved to solve the problem of spectrum congestion by allowing cognitive users to opportunistically utilize the underutilized spectrum while minimizing interference with other users. Byzantine attack is one of the security issues which threaten the successful deployment of this technology. Byzantine attack is compromised cognitive radios which relay falsified data about the availability of the spectrum to other legitimate cognitive radios in the network leading interference. In this paper we are proposing a security measure to thwart the effect caused by these attacks and compared it to Attack-Proof Cooperative Spectrum Sensing.

Sohu, Izhar Ahmed, Ahmed Rahimoon, Asif, Junejo, Amjad Ali, Ahmed Sohu, Arsalan, Junejo, Sadam Hussain.  2019.  Analogous Study of Security Threats in Cognitive Radio. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1-4.

Utilization of Wireless sensor network is growing with the development in modern technologies. On other side electromagnetic spectrum is limited resources. Application of wireless communication is expanding day by day which directly threaten electromagnetic spectrum band to become congested. Cognitive Radio solves this issue by implementation of unused frequency bands as "White Space". There is another important factor that gets attention in cognitive model i.e: Wireless Security. One of the famous causes of security threat is malicious node in cognitive radio wireless sensor networks (CRWSN). The goal of this paper is to focus on security issues which are related to CRWSN as Fusion techniques, Co-operative Spectrum sensing along with two dangerous attacks in CR: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF).

2019-11-25
Arpitha, R, Chaithra, B R, Padma, Usha.  2019.  Performance Analysis of Channel Coding Techniques for Cooperative Adhoc Network. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :752–756.
-In wireless networks, Cooperative communication can be used to increase the strength of the communication by means of spatial diversity. Basic idea that exists behind Cooperative communication is, if the transmission from source to destination is not successful, a helping node called relay can be used to send the same information to the destination through independent paths. In order to improve the performance of such communication, channel coding techniques can be used which reduces the Bit Error Rate. Previous works on cooperative communication only concentrated on improving channel capacity through cooperation. Hence this paper presents different Channel coding methods such as Turbo coding, Convolutional coding, and low-density parity-check coding over Rayleigh fading channels in the presence of Additive white Gaussian noise. Performance of these Channel coding techniques are measured in terms of noise power spectral density (NO ) vs. Bit error rate.
2019-06-10
Umar, M., Sabo, A., Tata, A. A..  2018.  Modified Cooperative Bait Detection Scheme for Detecting and Preventing Cooperative Blackhole and Eavesdropping Attacks in MANET. 2018 International Conference on Networking and Network Applications (NaNA). :121–126.

Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.

2019-01-21
Samanta, P., Kelly, E., Bashir, A., Debroy, S..  2018.  Collaborative Adversarial Modeling for Spectrum Aware IoT Communications. 2018 International Conference on Computing, Networking and Communications (ICNC). :447–451.
In order to cater the growing spectrum demands of large scale future 5G Internet of Things (IoT) applications, Dynamic Spectrum Access (DSA) based networks are being proposed as a high-throughput and cost-effective solution. However the lack of understanding of DSA paradigm's inherent security vulnerabilities on IoT networks might become a roadblock towards realizing such spectrum aware 5G vision. In this paper, we make an attempt to understand how such inherent DSA vulnerabilities in particular Spectrum Sensing Data Falsification (SSDF) attacks can be exploited by collaborative group of selfish adversaries and how that can impact the performance of spectrum aware IoT applications. We design a utility based selfish adversarial model mimicking collaborative SSDF attack in a cooperative spectrum sensing scenario where IoT networks use dedicated environmental sensing capability (ESC) for spectrum availability estimation. We model the interactions between the IoT system and collaborative selfish adversaries using a leader-follower game and investigate the existence of equilibrium. Using simulation results, we show the nature of adversarial and system utility components against system variables. We also explore Pareto-optimal adversarial strategy design that maximizes the attacker utility for varied system strategy spaces.