Biblio
Security model is an important subject in the field of low energy independence complexity theory. It takes security strategy as the core, changes the system from static protection to dynamic protection, and provides the basis for the rapid response of the system. A large number of empirical studies have been conducted to verify the cache consistency. The development of object oriented language is pure object oriented language, and the other is mixed object oriented language, that is, adding class, inheritance and other elements in process language and other languages. This paper studies a new object-oriented language application, namely GUT for a write-back cache, which is based on the study of simulation algorithm to solve all these challenges in the field of low energy independence complexity theory.
Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.
The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.
The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.
An air-gapped network is a type of IT network that is separated from the Internet - physically - due to the sensitive information it stores. Even if such a network is compromised with a malware, the hermetic isolation from the Internet prevents an attacker from leaking out any data - thanks to the lack of connectivity. In this paper we show how attackers can covertly leak sensitive data from air-gapped networks via the row of status LEDs on networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device (‘side-channel'), malware controlling the status LEDs to carry any type of data (‘covert-channel') has never studied before. Sensitive data can be covertly encoded over the blinking of the LEDs and received by remote cameras and optical sensors. A malicious code is executed in a compromised LAN switch or router allowing the attacker direct, low-level control of the LEDs. We provide the technical background on the internal architecture of switches and routers at both the hardware and software level which enables these attacks. We present different modulation and encoding schemas, along with a transmission protocol. We implement prototypes of the malware and discuss its design and implementation. We tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and discuss detection and prevention countermeasures. Our experiments show that sensitive data can be covertly leaked via the status LEDs of switches and routers at bit rates of 1 bit/sec to more than 2000 bit/sec per LED.
Due to the proliferation of reprogrammable hardware, core designs built from modules drawn from a variety of sources execute with direct access to critical system resources. Expressing guarantees that such modules satisfy, in particular the dynamic conditions under which they release information about their unbounded streams of inputs, and automatically proving that they satisfy such guarantees, is an open and critical problem.,,To address these challenges, we propose a domain-specific language, named STREAMS, for expressing information-flow policies with declassification over unbounded input streams. We also introduce a novel algorithm, named SIMAREL, that given a core design C and STREAMS policy P, automatically proves or falsifies that C satisfies P. The key technical insight behind the design of SIMAREL is a novel algorithm for efficiently synthesizing relational invariants over pairs of circuit executions.,,We expressed expected behavior of cores designed independently for research and production as STREAMS policies and used SIMAREL to check if each core satisfies its policy. SIMAREL proved that half of the cores satisfied expected behavior, but found unexpected information leaks in six open-source designs: an Ethernet controller, a flash memory controller, an SD-card storage manager, a robotics controller, a digital-signal processing (DSP) module, and a debugging interface.
In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.
Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.
This paper describes an experiment carried out to demonstrate robustness and trustworthiness of an orchestrated two-layer network test-bed (PROnet). A Robotic Operating System Industrial (ROS-I) distributed application makes use of end-to-end flow services offered by PROnet. The PROnet Orchestrator is used to provision reliable end-to-end Ethernet flows to support the ROS-I application required data exchange. For maximum reliability, the Orchestrator provisions network resource redundancy at both layers, i.e., Ethernet and optical. Experimental results show that the robotic application is not interrupted by a fiber outage.
This work presents the proof of concept implementation for the first hardware-based design of Moving Target Defense over IPv6 (MT6D) in full Register Transfer Level (RTL) logic, with future sights on an embedded Application-Specified Integrated Circuit (ASIC) implementation. Contributions are an IEEE 802.3 Ethernet stream-based in-line network packet processor with a specialized Complex Instruction Set Computer (CISC) instruction set architecture, RTL-based Network Time Protocol v4 synchronization, and a modular crypto engine. Traditional static network addressing allows attackers the incredible advantage of taking time to plan and execute attacks against a network. To counter, MT6D provides a network host obfuscation technique that offers network-based keyed access to specific hosts without altering existing network infrastructure and is an excellent technique for protecting the Internet of Things, IPv6 over Low Power Wireless Personal Area Networks, and high value globally routable IPv6 interfaces. This is done by crypto-graphically altering IPv6 network addresses every few seconds in a synchronous manner at all endpoints. A border gateway device can be used to intercept select packets to unobtrusively perform this action. Software driven implementations have posed many challenges, namely, constant code maintenance to remain compliant with all library and kernel dependencies, the need for a host computing platform, and less than optimal throughput. This work seeks to overcome these challenges in a lightweight system to be developed for practical wide deployment.
This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.
Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.
Storage area networking is driving commodity data center switches to support lossless Ethernet (DCB). Unfortunately, to enable DCB for all traffic on arbitrary network topologies, we must address several problems that can arise in lossless networks, e.g., large buffering delays, unfairness, head of line blocking, and deadlock. We propose TCP-Bolt, a TCP variant that not only addresses the first three problems but reduces flow completion times by as much as 70%. We also introduce a simple, practical deadlock-free routing scheme that eliminates deadlock while achieving aggregate network throughput within 15% of ECMP routing. This small compromise in potential routing capacity is well worth the gains in flow completion time. We note that our results on deadlock-free routing are also of independent interest to the storage area networking community. Further, as our hardware testbed illustrates, these gains are achievable today, without hardware changes to switches or NICs.
Nowadays is increasingly used process bus for communication of equipments in substations. In addition to signaling various statuses of device using GOOSE messages it is possible to transmit measured values, which can be used for diagnostic of system or other advanced functions. Transmission of such values via Ethernet is well defined in protocol IEC 61850-9-2. Paper introduces a tool designed for verification of sampled values generated by various devices using this protocol.
The key challenge to a datacenter network is its scalability to handle many customers and their applications. In a datacenter network, packet classification plays an important role in supporting various network services. Previous algorithms store classification rules with the same length combinations in a hash table to simplify the search procedure. The search performance of hash-based algorithms is tied to the number of hash tables. To achieve fast and scalable packet classification, we propose an algorithm, encoded rule expansion, to transform rules into an equivalent set of rules with fewer distinct length combinations, without affecting the classification results. The new algorithm can minimize the storage penalty of transformation and achieve a short search time. In addition, the scheme supports fast incremental updates. Our simulation results show that more than 90% hash tables can be eliminated. The reduction of length combinations leads to an improvement on speed performance of packet classification by an order of magnitude. The results also show that the software implementation of our scheme without using any hardware parallelism can support up to one thousand customer VLANs and one million rules, where each rule consumes less than 60 bytes and each packet classification can be accomplished under 50 memory accesses.
Moving target defense is an area of network security research in which machines are moved logically around a network in order to avoid detection. This is done by leveraging the immense size of the IPv6 address space and the statistical improbability of two machines selecting the same IPv6 address. This defensive technique forces a malicious actor to focus on the reconnaissance phase of their attack rather than focusing only on finding holes in a machine's static defenses. We have a current implementation of an IPv6 moving target defense entitled MT6D, which works well although is limited to functioning in a peer to peer scenario. As we push our research forward into client server networks, we must discover what the limits are in reference to the client server ratio. In our current implementation of a simple UDP echo server that binds large numbers of IPv6 addresses to the ethernet interface, we discover limits in both the number of addresses that we can successfully bind to an interface and the speed at which UDP requests can be successfully handled across a large number of bound interfaces.
Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.