Visible to the public Biblio

Filters: Keyword is Local area networks  [Clear All Filters]
2020-11-16
Ibrahim, M., Alsheikh, A..  2018.  Assessing Level of Resilience Using Attack Graphs. 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Cyber-Physical-Systems are subject to cyber-attacks due to existing vulnerabilities in the various components constituting them. System Resiliency is concerned with the extent the system is able to bounce back to a normal state under attacks. In this paper, two communication Networks are analyzed, formally described, and modeled using Architecture Analysis & Design Language (AADL), identifying their architecture, connections, vulnerabilities, resources, possible attack instances as well as their pre-and post-conditions. The generated network models are then verified against a security property using JKind model checker integrated tool. The union of the generated attack sequences/scenarios resulting in overall network compromise (given by its loss of stability) is the Attack graph. The generated Attack graph is visualized graphically using Unity software, and then used to assess the worst Level of Resilience for both networks.
2020-11-09
Muller, T., Walz, A., Kiefer, M., Doran, H. Dermot, Sikora, A..  2018.  Challenges and prospects of communication security in real-time ethernet automation systems. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1–9.
Real-Time Ethernet has become the major communication technology for modern automation and industrial control systems. On the one hand, this trend increases the need for an automation-friendly security solution, as such networks can no longer be considered sufficiently isolated. On the other hand, it shows that, despite diverging requirements, the domain of Operational Technology (OT) can derive advantage from high-volume technology of the Information Technology (IT) domain. Based on these two sides of the same coin, we study the challenges and prospects of approaches to communication security in real-time Ethernet automation systems. In order to capitalize the expertise aggregated in decades of research and development, we put a special focus on the reuse of well-established security technology from the IT domain. We argue that enhancing such technology to become automation-friendly is likely to result in more robust and secure designs than greenfield designs. Because of its widespread deployment and the (to this date) nonexistence of a consistent security architecture, we use PROFINET as a showcase of our considerations. Security requirements for this technology are defined and different well-known solutions are examined according their suitability for PROFINET. Based on these findings, we elaborate the necessary adaptions for the deployment on PROFINET.
2020-06-29
Sultana, Subrina, Nasrin, Sumaiya, Lipi, Farhana Kabir, Hossain, Md Afzal, Sultana, Zinia, Jannat, Fatima.  2019.  Detecting and Preventing IP Spoofing and Local Area Network Denial (LAND) Attack for Cloud Computing with the Modification of Hop Count Filtering (HCF) Mechanism. 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). :1–6.
In today's world the number of consumers of cloud computing is increasing day by day. So, security is a big concern for cloud computing environment to keep user's data safe and secure. Among different types of attacks in cloud one of the harmful and frequently occurred attack is Distributed Denial of Service (DDoS) attack. DDoS is one type of flooding attack which is initiated by sending a large number of invalid packets to limit the services of the victim server. As a result, server can not serve the legitimate requests. DDoS attack can be done by a lot of strategies like malformed packets, IP spoofing, smurf attack, teardrop attack, syn flood attack, local area network denial (LAND) attack etc. This paper focuses on IP spoofing and LAND based DDoS attack. The objective of this paper is to propose an algorithm to detect and prevent IP spoofing and LAND attack. To achieve this objective a new approach is proposed combining two existing solutions of DDoS attack caused by IP spoofing and ill-formed packets. The proposed approach will provide a transparent solution, filter out the spoofed packets and minimize memory exhaustion through minimizing the number of insertions and updates required in the datatable. Finally, the approach is implemented and simulated using CloudSim 3.0 toolkit (a virtual cloud environment) followed by result analysis and comparison with existing algorithms.
2020-05-04
Lin, Yiyong, Lin, Lei.  2019.  Design and Realization of a Computer Security Control Circuit for Local Area Network. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :9–12.
A local area network (LAN) computer security control circuit is designed for the practical problem of LAN computer users "one machine crosses two networks" on this paper, which provides a protection barrier for the information security of LAN computers on the hardware. This paper briefly analyzes the risks and challenges faced by LAN security. The overall design idea, circuit design and working principle of LAN computer security control circuit are described in detail. The characteristics of the system are summarized. Finally, the design circuit is verified by practical application in the unit. The application results show that the circuit is stable in operation, simple in operation, safe and reliable, and convenient in installation and maintain, etc., which has achieved the design effect and played a good role in ensuring the security of the network information of the local area network.
Whittington, Christopher, Cady, Edward, Ratchen, Daniel, Dawji, Yunus.  2018.  Re-envisioning digital architectures connecting CE hardware for security, reliability and low energy. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
Exponential growth of data produced and consumed by consumer electronic systems will strain data connectivity technologies beyond the next ten years. A private universal data platform is therefore required to connect CE Hardware for improved security, reliability and energy use. A novel Push-Pull data network architecture is hereto presented, employing multiple bridged peripheral links to create an ultra-fast, ultra-secure, private and low power data network to connect nearly any system. Bridging standard USB 3.0 technologies, we demonstrate a universally secure, ultra-low power and scalable switchable data platform offering the highest level of data privacy, security and performance. Delivering up to 12 times the throughput speeds of existing USB 3.0 data transfer cables, the presented solution builds on the reliability of universal peripheral communications links using proven ports, protocols and low-power components. A “Software Constructed” ad-hoc circuit network, the presented digital architecture delivers frictionless adoption and exceptional price-performance measures connecting both existing and future CE hardware.
2020-04-24
Zhang, Lei, Zhang, Jianqing, Chen, Yong, Liao, Shaowen.  2018.  Research on the Simulation Algorithm of Object-Oriented Language. 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE). :902—904.

Security model is an important subject in the field of low energy independence complexity theory. It takes security strategy as the core, changes the system from static protection to dynamic protection, and provides the basis for the rapid response of the system. A large number of empirical studies have been conducted to verify the cache consistency. The development of object oriented language is pure object oriented language, and the other is mixed object oriented language, that is, adding class, inheritance and other elements in process language and other languages. This paper studies a new object-oriented language application, namely GUT for a write-back cache, which is based on the study of simulation algorithm to solve all these challenges in the field of low energy independence complexity theory.

2020-04-13
O’Raw, John, Laverty, David, Morrow, D. John.  2019.  Securing the Industrial Internet of Things for Critical Infrastructure (IIoT-CI). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :70–75.
The Industrial Internet of Things (IIoT) is a term applied to the industrial application of M2M devices. The security of IIoT devices is a difficult problem and where the automation of critical infrastructure is intended, risks may be unacceptable. Remote attacks are a significant threat and solutions are sought which are secure by default. The problem space may be analyzed using threat modelling methods. Software Defined Networks (SDN) provide mitigation for remote attacks which exploit local area networks. Similar concepts applied to the WAN may improve availability and performance and provide granular data on link characteristics. Schemes such as the Software Defined Perimeter allow IIoT devices to communicate on the Internet, mitigating avenues of remote attack. Finally, separation of duties at the IIoT device may prevent attacks on the integrity of the device or the confidentiality and integrity of its communications. Work remains to be done on the mitigation of DDoS.
2020-04-03
Zhao, Hui, Li, Zhihui, Wei, Hansheng, Shi, Jianqi, Huang, Yanhong.  2019.  SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :59—67.

Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.

2020-02-17
Liu, Zhikun, Gui, Canzhi, Ma, Chao.  2019.  Design and Verification of Integrated Ship Monitoring Network with High Reliability and Zero-Time Self-Healing. 2019 Chinese Control And Decision Conference (CCDC). :2348–2351.
The realization principle of zero-time self-healing network communication technology is introduced. According to the characteristics of ship monitoring, an integrated ship monitoring network is designed, which integrates the information of ship monitoring equipment. By setting up a network performance test environment, the information delay of self-healing network switch is tested, and the technical characteristics of "no packet loss" are verified. Zero-time self-healing network communication technology is an innovative technology in the design of ship monitoring network. It will greatly reduce the laying of network cables, reduce the workload of information upgrade and transformation of ships, and has the characteristics of continuous maintenance of the network. It has a wide application prospect.
2019-06-17
Gu, R., Zhang, X., Yu, L., Zhang, J..  2018.  Enhancing Security and Scalability in Software Defined LTE Core Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :837–842.

The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.

2019-03-28
Wen, M., Yao, D., Li, B., Lu, R..  2018.  State Estimation Based Energy Theft Detection Scheme with Privacy Preservation in Smart Grid. 2018 IEEE International Conference on Communications (ICC). :1-6.

The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.

2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
2019-01-31
Guri, M., Zadov, B., Daidakulov, A., Elovici, Y..  2018.  xLED: Covert Data Exfiltration from Air-Gapped Networks via Switch and Router LEDs. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–12.

An air-gapped network is a type of IT network that is separated from the Internet - physically - due to the sensitive information it stores. Even if such a network is compromised with a malware, the hermetic isolation from the Internet prevents an attacker from leaking out any data - thanks to the lack of connectivity. In this paper we show how attackers can covertly leak sensitive data from air-gapped networks via the row of status LEDs on networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device (‘side-channel'), malware controlling the status LEDs to carry any type of data (‘covert-channel') has never studied before. Sensitive data can be covertly encoded over the blinking of the LEDs and received by remote cameras and optical sensors. A malicious code is executed in a compromised LAN switch or router allowing the attacker direct, low-level control of the LEDs. We provide the technical background on the internal architecture of switches and routers at both the hardware and software level which enables these attacks. We present different modulation and encoding schemas, along with a transmission protocol. We implement prototypes of the malware and discuss its design and implementation. We tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and discuss detection and prevention countermeasures. Our experiments show that sensitive data can be covertly leaked via the status LEDs of switches and routers at bit rates of 1 bit/sec to more than 2000 bit/sec per LED.

2018-06-11
Kwon, H., Harris, W., Esmaeilzadeh, H..  2017.  Proving Flow Security of Sequential Logic via Automatically-Synthesized Relational Invariants. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :420–435.

Due to the proliferation of reprogrammable hardware, core designs built from modules drawn from a variety of sources execute with direct access to critical system resources. Expressing guarantees that such modules satisfy, in particular the dynamic conditions under which they release information about their unbounded streams of inputs, and automatically proving that they satisfy such guarantees, is an open and critical problem.,,To address these challenges, we propose a domain-specific language, named STREAMS, for expressing information-flow policies with declassification over unbounded input streams. We also introduce a novel algorithm, named SIMAREL, that given a core design C and STREAMS policy P, automatically proves or falsifies that C satisfies P. The key technical insight behind the design of SIMAREL is a novel algorithm for efficiently synthesizing relational invariants over pairs of circuit executions.,,We expressed expected behavior of cores designed independently for research and production as STREAMS policies and used SIMAREL to check if each core satisfies its policy. SIMAREL proved that half of the cores satisfied expected behavior, but found unexpected information leaks in six open-source designs: an Ethernet controller, a flash memory controller, an SD-card storage manager, a robotics controller, a digital-signal processing (DSP) module, and a debugging interface.

2018-05-30
Su, W., Antoniou, A., Eagle, C..  2017.  Cyber Security of Industrial Communication Protocols. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.

2018-04-11
Ghanem, K., Aparicio-Navarro, F. J., Kyriakopoulos, K. G., Lambotharan, S., Chambers, J. A..  2017.  Support Vector Machine for Network Intrusion and Cyber-Attack Detection. 2017 Sensor Signal Processing for Defence Conference (SSPD). :1–5.

Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non- linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non- homogeneous features.

2018-02-02
Mirkhanzadeh, B., Shao, C., Shakeri, A., Sato, T., Razo-Razo, M., Tacca, M., Fumagalli, A., Yamanaka, N..  2017.  A two-layer network Orchestrator offering trustworthy connectivity to a ROS-industrial application. 2017 19th International Conference on Transparent Optical Networks (ICTON). :1–4.

This paper describes an experiment carried out to demonstrate robustness and trustworthiness of an orchestrated two-layer network test-bed (PROnet). A Robotic Operating System Industrial (ROS-I) distributed application makes use of end-to-end flow services offered by PROnet. The PROnet Orchestrator is used to provision reliable end-to-end Ethernet flows to support the ROS-I application required data exchange. For maximum reliability, the Orchestrator provisions network resource redundancy at both layers, i.e., Ethernet and optical. Experimental results show that the robotic application is not interrupted by a fiber outage.

2018-01-16
Sagisi, J., Tront, J., Bradley, R. M..  2017.  Platform agnostic, scalable, and unobtrusive FPGA network processor design of moving target defense over IPv6 (MT6D) over IEEE 802.3 Ethernet. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :165–165.

This work presents the proof of concept implementation for the first hardware-based design of Moving Target Defense over IPv6 (MT6D) in full Register Transfer Level (RTL) logic, with future sights on an embedded Application-Specified Integrated Circuit (ASIC) implementation. Contributions are an IEEE 802.3 Ethernet stream-based in-line network packet processor with a specialized Complex Instruction Set Computer (CISC) instruction set architecture, RTL-based Network Time Protocol v4 synchronization, and a modular crypto engine. Traditional static network addressing allows attackers the incredible advantage of taking time to plan and execute attacks against a network. To counter, MT6D provides a network host obfuscation technique that offers network-based keyed access to specific hosts without altering existing network infrastructure and is an excellent technique for protecting the Internet of Things, IPv6 over Low Power Wireless Personal Area Networks, and high value globally routable IPv6 interfaces. This is done by crypto-graphically altering IPv6 network addresses every few seconds in a synchronous manner at all endpoints. A border gateway device can be used to intercept select packets to unobtrusively perform this action. Software driven implementations have posed many challenges, namely, constant code maintenance to remain compliant with all library and kernel dependencies, the need for a host computing platform, and less than optimal throughput. This work seeks to overcome these challenges in a lightweight system to be developed for practical wide deployment.

Ulrich, J., Drahos, J., Govindarasu, M..  2017.  A symmetric address translation approach for a network layer moving target defense to secure power grid networks. 2017 Resilience Week (RWS). :163–169.

This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.

2017-04-24
Barman, Ludovic, Zamani, Mahdi, Dacosta, Italo, Feigenbaum, Joan, Ford, Bryan, Hubaux, Jean-Pierre, Wolinsky, David.  2016.  PriFi: A Low-Latency and Tracking-Resistant Protocol for Local-Area Anonymous Communication. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :181–184.

Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.

2015-05-06
Stephens, B., Cox, A.L., Singla, A., Carter, J., Dixon, C., Felter, W..  2014.  Practical DCB for improved data center networks. INFOCOM, 2014 Proceedings IEEE. :1824-1832.

Storage area networking is driving commodity data center switches to support lossless Ethernet (DCB). Unfortunately, to enable DCB for all traffic on arbitrary network topologies, we must address several problems that can arise in lossless networks, e.g., large buffering delays, unfairness, head of line blocking, and deadlock. We propose TCP-Bolt, a TCP variant that not only addresses the first three problems but reduces flow completion times by as much as 70%. We also introduce a simple, practical deadlock-free routing scheme that eliminates deadlock while achieving aggregate network throughput within 15% of ECMP routing. This small compromise in potential routing capacity is well worth the gains in flow completion time. We note that our results on deadlock-free routing are also of independent interest to the storage area networking community. Further, as our hardware testbed illustrates, these gains are achievable today, without hardware changes to switches or NICs.

Sumec, S..  2014.  Software tool for verification of sampled values transmitted via IEC 61850-9-2 protocol. Electric Power Engineering (EPE), Proccedings of the 2014 15th International Scientific Conference on. :113-117.

Nowadays is increasingly used process bus for communication of equipments in substations. In addition to signaling various statuses of device using GOOSE messages it is possible to transmit measured values, which can be used for diagnostic of system or other advanced functions. Transmission of such values via Ethernet is well defined in protocol IEC 61850-9-2. Paper introduces a tool designed for verification of sampled values generated by various devices using this protocol.
 

Pi-Chung Wang.  2014.  Scalable Packet Classification for Datacenter Networks. Selected Areas in Communications, IEEE Journal on. 32:124-137.

The key challenge to a datacenter network is its scalability to handle many customers and their applications. In a datacenter network, packet classification plays an important role in supporting various network services. Previous algorithms store classification rules with the same length combinations in a hash table to simplify the search procedure. The search performance of hash-based algorithms is tied to the number of hash tables. To achieve fast and scalable packet classification, we propose an algorithm, encoded rule expansion, to transform rules into an equivalent set of rules with fewer distinct length combinations, without affecting the classification results. The new algorithm can minimize the storage penalty of transformation and achieve a short search time. In addition, the scheme supports fast incremental updates. Our simulation results show that more than 90% hash tables can be eliminated. The reduction of length combinations leads to an improvement on speed performance of packet classification by an order of magnitude. The results also show that the software implementation of our scheme without using any hardware parallelism can support up to one thousand customer VLANs and one million rules, where each rule consumes less than 60 bytes and each packet classification can be accomplished under 50 memory accesses.
 

2015-05-05
Morrell, C., Ransbottom, J.S., Marchany, R., Tront, J.G..  2014.  Scaling IPv6 address bindings in support of a moving target defense. Internet Technology and Secured Transactions (ICITST), 2014 9th International Conference for. :440-445.

Moving target defense is an area of network security research in which machines are moved logically around a network in order to avoid detection. This is done by leveraging the immense size of the IPv6 address space and the statistical improbability of two machines selecting the same IPv6 address. This defensive technique forces a malicious actor to focus on the reconnaissance phase of their attack rather than focusing only on finding holes in a machine's static defenses. We have a current implementation of an IPv6 moving target defense entitled MT6D, which works well although is limited to functioning in a peer to peer scenario. As we push our research forward into client server networks, we must discover what the limits are in reference to the client server ratio. In our current implementation of a simple UDP echo server that binds large numbers of IPv6 addresses to the ethernet interface, we discover limits in both the number of addresses that we can successfully bind to an interface and the speed at which UDP requests can be successfully handled across a large number of bound interfaces.
 

2015-05-04
Pawlowski, M.P., Jara, A.J., Ogorzalek, M.J..  2014.  Extending Extensible Authentication Protocol over IEEE 802.15.4 Networks. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2014 Eighth International Conference on. :340-345.

Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.